Daily Summary Embedding Testing

This commit is contained in:
Cameron
2026-01-08 13:41:32 -05:00
parent 61e10f7678
commit 084994e0b5
8 changed files with 1000 additions and 106 deletions

View File

@@ -10,6 +10,75 @@ use crate::ai::{OllamaClient, SmsApiClient, SmsMessage};
use crate::database::{DailySummaryDao, InsertDailySummary};
use crate::otel::global_tracer;
/// Strip boilerplate prefixes and common phrases from summaries before embedding.
/// This improves embedding diversity by removing structural similarity.
pub fn strip_summary_boilerplate(summary: &str) -> String {
let mut text = summary.trim().to_string();
// Remove markdown headers
while text.starts_with('#') {
if let Some(pos) = text.find('\n') {
text = text[pos..].trim_start().to_string();
} else {
// Single line with just headers, try to extract content after #s
text = text.trim_start_matches('#').trim().to_string();
break;
}
}
// Remove "Summary:" prefix variations (with optional markdown bold)
let prefixes = [
"**Summary:**",
"**Summary**:",
"*Summary:*",
"Summary:",
"**summary:**",
"summary:",
];
for prefix in prefixes {
if text.to_lowercase().starts_with(&prefix.to_lowercase()) {
text = text[prefix.len()..].trim_start().to_string();
break;
}
}
// Remove common opening phrases that add no semantic value
let opening_phrases = [
"Today, Melissa and I discussed",
"Today, Amanda and I discussed",
"Today Melissa and I discussed",
"Today Amanda and I discussed",
"Melissa and I discussed",
"Amanda and I discussed",
"Today, I discussed",
"Today I discussed",
"The conversation covered",
"This conversation covered",
"In this conversation,",
"During this conversation,",
];
for phrase in opening_phrases {
if text.to_lowercase().starts_with(&phrase.to_lowercase()) {
text = text[phrase.len()..].trim_start().to_string();
// Remove leading punctuation/articles after stripping phrase
text = text.trim_start_matches(|c| c == ',' || c == ':' || c == '-').trim_start().to_string();
break;
}
}
// Remove any remaining leading markdown bold markers
if text.starts_with("**") {
if let Some(end) = text[2..].find("**") {
// Keep the content between ** but remove the markers
let bold_content = &text[2..2 + end];
text = format!("{}{}", bold_content, &text[4 + end..]);
}
}
text.trim().to_string()
}
/// Generate and embed daily conversation summaries for a date range
/// Default: August 2024 ±30 days (July 1 - September 30, 2024)
pub async fn generate_daily_summaries(
@@ -238,22 +307,34 @@ async fn generate_and_store_daily_summary(
let weekday = date.format("%A");
let prompt = format!(
r#"Summarize this day's conversation in 3-5 sentences. Focus on:
- Key topics, activities, and events discussed
- Places, people, or organizations mentioned
- Plans made or decisions discussed
- Overall mood or themes of the day
r#"Summarize this day's conversation between me and {}.
IMPORTANT: Clearly distinguish between what "I" or "Me" did versus what {} did.
Always explicitly attribute actions, plans, and activities to the correct person.
Use "I" or "Me" for my actions and "{}" for their actions.
CRITICAL FORMAT RULES:
- Do NOT start with "Based on the conversation..." or "Here is a summary..." or similar preambles
- Do NOT repeat the date at the beginning
- Start DIRECTLY with the content - begin with a person's name or action
- Write in past tense, as if recording what happened
NARRATIVE (3-5 sentences):
- What specific topics, activities, or events were discussed?
- What places, people, or organizations were mentioned?
- What plans were made or decisions discussed?
- Clearly distinguish between what "I" did versus what {} did
KEYWORDS (comma-separated):
5-10 specific keywords that capture this conversation's unique content:
- Proper nouns (people, places, brands)
- Specific activities ("drum corps audition" not just "music")
- Distinctive terms that make this day unique
Date: {} ({})
Messages:
{}
Write a natural, informative summary with clear subject attribution.
Summary:"#,
YOUR RESPONSE (follow this format EXACTLY):
Summary: [Start directly with content, NO preamble]
Keywords: [specific, unique terms]"#,
contact,
contact,
date.format("%B %d, %Y"),
@@ -265,7 +346,7 @@ Summary:"#,
let summary = ollama
.generate(
&prompt,
Some("You are a conversation summarizer. Create clear, factual summaries that maintain precise subject attribution - clearly distinguishing who said or did what."),
Some("You are a conversation summarizer. Create clear, factual summaries with precise subject attribution AND extract distinctive keywords. Focus on specific, unique terms that differentiate this conversation from others."),
)
.await?;
@@ -277,8 +358,15 @@ Summary:"#,
span.set_attribute(KeyValue::new("summary_length", summary.len() as i64));
// Embed the summary
let embedding = ollama.generate_embedding(&summary).await?;
// Strip boilerplate before embedding to improve vector diversity
let stripped_summary = strip_summary_boilerplate(&summary);
log::debug!(
"Stripped summary for embedding: {}",
stripped_summary.chars().take(100).collect::<String>()
);
// Embed the stripped summary (store original summary in DB)
let embedding = ollama.generate_embedding(&stripped_summary).await?;
span.set_attribute(KeyValue::new(
"embedding_dimensions",
@@ -293,7 +381,8 @@ Summary:"#,
message_count: messages.len() as i32,
embedding,
created_at: Utc::now().timestamp(),
model_version: "nomic-embed-text:v1.5".to_string(),
// model_version: "nomic-embed-text:v1.5".to_string(),
model_version: "mxbai-embed-large:335m".to_string(),
};
// Create context from current span for DB operation

View File

@@ -9,7 +9,9 @@ use std::sync::{Arc, Mutex};
use crate::ai::ollama::OllamaClient;
use crate::ai::sms_client::SmsApiClient;
use crate::database::models::InsertPhotoInsight;
use crate::database::{CalendarEventDao, DailySummaryDao, ExifDao, InsightDao, LocationHistoryDao, SearchHistoryDao};
use crate::database::{
CalendarEventDao, DailySummaryDao, ExifDao, InsightDao, LocationHistoryDao, SearchHistoryDao,
};
use crate::memories::extract_date_from_filename;
use crate::otel::global_tracer;
use crate::utils::normalize_path;
@@ -98,6 +100,7 @@ impl InsightGenerator {
date: chrono::NaiveDate,
location: Option<&str>,
contact: Option<&str>,
topics: Option<&[String]>,
limit: usize,
) -> Result<Vec<String>> {
let tracer = global_tracer();
@@ -113,9 +116,14 @@ impl InsightGenerator {
filter_cx
.span()
.set_attribute(KeyValue::new("exclusion_window_days", 30));
if let Some(t) = topics {
filter_cx
.span()
.set_attribute(KeyValue::new("topics", t.join(", ")));
}
let query_results = self
.find_relevant_messages_rag(date, location, contact, limit * 2)
.find_relevant_messages_rag(date, location, contact, topics, limit * 2)
.await?;
filter_cx.span().set_attribute(KeyValue::new(
@@ -177,6 +185,7 @@ impl InsightGenerator {
date: chrono::NaiveDate,
location: Option<&str>,
contact: Option<&str>,
topics: Option<&[String]>,
limit: usize,
) -> Result<Vec<String>> {
let tracer = global_tracer();
@@ -191,27 +200,24 @@ impl InsightGenerator {
span.set_attribute(KeyValue::new("contact", c.to_string()));
}
// Build more detailed query string from photo context
let mut query_parts = Vec::new();
// Add temporal context
query_parts.push(format!("On {}", date.format("%B %d, %Y")));
// Add location if available
if let Some(loc) = location {
query_parts.push(format!("at {}", loc));
}
// Add contact context if available
if let Some(c) = contact {
query_parts.push(format!("conversation with {}", c));
}
// Add day of week for temporal context
let weekday = date.format("%A");
query_parts.push(format!("it was a {}", weekday));
let query = query_parts.join(", ");
// Build query string - prioritize topics if available (semantically meaningful)
let query = if let Some(topics) = topics {
if !topics.is_empty() {
// Use topics for semantic search - these are actual content keywords
let topic_str = topics.join(", ");
if let Some(c) = contact {
format!("Conversations about {} with {}", topic_str, c)
} else {
format!("Conversations about {}", topic_str)
}
} else {
// Fallback to metadata-based query
Self::build_metadata_query(date, location, contact)
}
} else {
// Fallback to metadata-based query
Self::build_metadata_query(date, location, contact)
};
span.set_attribute(KeyValue::new("query", query.clone()));
@@ -225,14 +231,16 @@ impl InsightGenerator {
// Generate embedding for the query
let query_embedding = self.ollama.generate_embedding(&query).await?;
// Search for similar daily summaries
// Search for similar daily summaries with time-based weighting
// This prioritizes summaries temporally close to the query date
let mut summary_dao = self
.daily_summary_dao
.lock()
.expect("Unable to lock DailySummaryDao");
let date_str = date.format("%Y-%m-%d").to_string();
let similar_summaries = summary_dao
.find_similar_summaries(&search_cx, &query_embedding, limit)
.find_similar_summaries_with_time_weight(&search_cx, &query_embedding, &date_str, limit)
.map_err(|e| anyhow::anyhow!("Failed to find similar summaries: {:?}", e))?;
log::info!(
@@ -261,6 +269,34 @@ impl InsightGenerator {
Ok(formatted)
}
/// Build a metadata-based query (fallback when no topics available)
fn build_metadata_query(
date: chrono::NaiveDate,
location: Option<&str>,
contact: Option<&str>,
) -> String {
let mut query_parts = Vec::new();
// Add temporal context
query_parts.push(format!("On {}", date.format("%B %d, %Y")));
// Add location if available
if let Some(loc) = location {
query_parts.push(format!("at {}", loc));
}
// Add contact context if available
if let Some(c) = contact {
query_parts.push(format!("conversation with {}", c));
}
// Add day of week for temporal context
let weekday = date.format("%A");
query_parts.push(format!("it was a {}", weekday));
query_parts.join(", ")
}
/// Haversine distance calculation for GPS proximity (in kilometers)
fn haversine_distance(lat1: f64, lon1: f64, lat2: f64, lon2: f64) -> f64 {
const R: f64 = 6371.0; // Earth radius in km
@@ -296,7 +332,10 @@ impl InsightGenerator {
};
let events = {
let mut dao = self.calendar_dao.lock().expect("Unable to lock CalendarEventDao");
let mut dao = self
.calendar_dao
.lock()
.expect("Unable to lock CalendarEventDao");
dao.find_relevant_events_hybrid(
&calendar_cx,
timestamp,
@@ -321,7 +360,8 @@ impl InsightGenerator {
.map(|dt| dt.format("%Y-%m-%d %H:%M").to_string())
.unwrap_or_else(|| "unknown".to_string());
let attendees = e.attendees
let attendees = e
.attendees
.as_ref()
.and_then(|a| serde_json::from_str::<Vec<String>>(a).ok())
.map(|list| format!(" (with {})", list.join(", ")))
@@ -351,11 +391,14 @@ impl InsightGenerator {
let location_cx = parent_cx.with_span(span);
let nearest = {
let mut dao = self.location_dao.lock().expect("Unable to lock LocationHistoryDao");
let mut dao = self
.location_dao
.lock()
.expect("Unable to lock LocationHistoryDao");
dao.find_nearest_location(
&location_cx,
timestamp,
1800, // ±30 minutes
10800, // ±3 hours (more realistic for photo timing)
)
.ok()
.flatten()
@@ -366,26 +409,33 @@ impl InsightGenerator {
if let Some(loc) = nearest {
// Check if this adds NEW information compared to EXIF
if let Some((exif_lat, exif_lon)) = exif_gps {
let distance = Self::haversine_distance(
exif_lat,
exif_lon,
loc.latitude,
loc.longitude,
);
let distance =
Self::haversine_distance(exif_lat, exif_lon, loc.latitude, loc.longitude);
// Only use if it's significantly different (>100m) or EXIF lacks GPS
if distance < 0.1 {
log::info!("Location history matches EXIF GPS ({}m), skipping", (distance * 1000.0) as i32);
// Skip only if very close AND no useful activity/place info
// Allow activity context even if coordinates match
if distance < 0.5 && loc.activity.is_none() && loc.place_name.is_none() {
log::debug!(
"Location history matches EXIF GPS ({}m) with no extra context, skipping",
(distance * 1000.0) as i32
);
return Ok(None);
} else if distance < 0.5 {
log::debug!(
"Location history close to EXIF ({}m) but has activity/place info",
(distance * 1000.0) as i32
);
}
}
let activity = loc.activity
let activity = loc
.activity
.as_ref()
.map(|a| format!(" ({})", a))
.unwrap_or_default();
let place = loc.place_name
let place = loc
.place_name
.as_ref()
.map(|p| format!(" at {}", p))
.unwrap_or_default();
@@ -425,7 +475,9 @@ impl InsightGenerator {
.map(|dt| dt.format("%B %Y").to_string())
.unwrap_or_else(|| "".to_string()),
location.unwrap_or(""),
contact.map(|c| format!("involving {}", c)).unwrap_or_default()
contact
.map(|c| format!("involving {}", c))
.unwrap_or_default()
);
let query_embedding = match self.ollama.generate_embedding(&query_text).await {
@@ -440,7 +492,10 @@ impl InsightGenerator {
};
let searches = {
let mut dao = self.search_dao.lock().expect("Unable to lock SearchHistoryDao");
let mut dao = self
.search_dao
.lock()
.expect("Unable to lock SearchHistoryDao");
dao.find_relevant_searches_hybrid(
&search_cx,
timestamp,
@@ -455,6 +510,10 @@ impl InsightGenerator {
if let Some(searches) = searches {
if searches.is_empty() {
log::warn!(
"No relevant searches found for photo timestamp {}",
timestamp
);
return Ok(None);
}
@@ -599,8 +658,16 @@ impl InsightGenerator {
insight_cx
.span()
.set_attribute(KeyValue::new("location", l.clone()));
Some(l.clone())
} else {
// Fallback: If reverse geocoding fails, use coordinates
log::warn!(
"Reverse geocoding failed for {}, {}, using coordinates as fallback",
lat,
lon
);
Some(format!("{:.4}, {:.4}", lat, lon))
}
loc
} else {
None
}
@@ -615,31 +682,15 @@ impl InsightGenerator {
// TEMPORARY: Set to true to disable RAG and use only time-based retrieval for testing
let disable_rag_for_testing = false;
// Decide strategy based on available metadata
let has_strong_query = location.is_some();
if disable_rag_for_testing {
log::warn!("RAG DISABLED FOR TESTING - Using only time-based retrieval (±1 day)");
log::warn!("RAG DISABLED FOR TESTING - Using only time-based retrieval (±2 days)");
// Skip directly to fallback
} else if has_strong_query {
// Strategy A: Pure RAG (we have location for good semantic matching)
log::info!("Using RAG with location-based query");
match self
.find_relevant_messages_rag(date_taken, location.as_deref(), contact.as_deref(), 20)
.await
{
Ok(rag_messages) if !rag_messages.is_empty() => {
used_rag = true;
sms_summary = self.summarize_messages(&rag_messages, &ollama_client).await;
}
Ok(_) => log::info!("RAG returned no messages"),
Err(e) => log::warn!("RAG failed: {}", e),
}
} else {
// Strategy B: Expanded immediate context + historical RAG
// ALWAYS use Strategy B: Expanded immediate context + historical RAG
// This is more reliable than pure semantic search which can match irrelevant messages
log::info!("Using expanded immediate context + historical RAG approach");
// Step 1: Get FULL immediate temporal context (±1 day, ALL messages)
// Step 1: Get FULL immediate temporal context (±2 days, ALL messages)
let immediate_messages = self
.sms_client
.fetch_messages_for_contact(contact.as_deref(), timestamp)
@@ -650,7 +701,7 @@ impl InsightGenerator {
});
log::info!(
"Fetched {} messages from ±1 day window (using ALL for immediate context)",
"Fetched {} messages from ±2 days window (using ALL for immediate context)",
immediate_messages.len()
);
@@ -662,13 +713,19 @@ impl InsightGenerator {
log::info!("Extracted topics for query enrichment: {:?}", topics);
// Step 3: Try historical RAG (>30 days ago)
// Step 3: Try historical RAG (>30 days ago) using extracted topics
let topics_slice = if topics.is_empty() {
None
} else {
Some(topics.as_slice())
};
match self
.find_relevant_messages_rag_historical(
&insight_cx,
date_taken,
None,
contact.as_deref(),
topics_slice,
10, // Top 10 historical matches
)
.await
@@ -694,7 +751,7 @@ impl InsightGenerator {
// Combine summaries
sms_summary = Some(format!(
"Immediate context (±1 day): {}\n\nSimilar moments from the past: {}",
"Immediate context (±2 days): {}\n\nSimilar moments from the past: {}",
immediate_summary, historical_summary
));
}
@@ -716,7 +773,7 @@ impl InsightGenerator {
log::info!("No immediate messages found, trying basic RAG as fallback");
// Fallback to basic RAG even without strong query
match self
.find_relevant_messages_rag(date_taken, None, contact.as_deref(), 20)
.find_relevant_messages_rag(date_taken, None, contact.as_deref(), None, 20)
.await
{
Ok(rag_messages) if !rag_messages.is_empty() => {
@@ -730,7 +787,7 @@ impl InsightGenerator {
// 6. Fallback to traditional time-based message retrieval if RAG didn't work
if !used_rag {
log::info!("Using traditional time-based message retrieval (±1 day)");
log::info!("Using traditional time-based message retrieval (±2 days)");
let sms_messages = self
.sms_client
.fetch_messages_for_contact(contact.as_deref(), timestamp)
@@ -802,7 +859,12 @@ impl InsightGenerator {
.flatten();
let search_context = self
.gather_search_context(&insight_cx, timestamp, location.as_deref(), contact.as_deref())
.gather_search_context(
&insight_cx,
timestamp,
location.as_deref(),
contact.as_deref(),
)
.await
.ok()
.flatten();
@@ -815,7 +877,10 @@ impl InsightGenerator {
search_context,
);
log::info!("Combined context from all sources ({} chars)", combined_context.len());
log::info!(
"Combined context from all sources ({} chars)",
combined_context.len()
);
// 8. Generate title and summary with Ollama (using multi-source context)
let title = ollama_client
@@ -905,13 +970,23 @@ Return ONLY the comma-separated list, nothing else."#,
.await
{
Ok(response) => {
log::debug!("Topic extraction raw response: {}", response);
// Parse comma-separated topics
response
let topics: Vec<String> = response
.split(',')
.map(|s| s.trim().to_string())
.filter(|s| !s.is_empty() && s.len() > 1) // Filter out single chars
.take(7) // Increased from 5 to 7
.collect()
.collect();
if topics.is_empty() {
log::warn!("Topic extraction returned empty list from {} messages", messages.len());
} else {
log::info!("Extracted {} topics from {} messages: {}", topics.len(), messages.len(), topics.join(", "));
}
topics
}
Err(e) => {
log::warn!("Failed to extract topics from messages: {}", e);
@@ -953,7 +1028,7 @@ Return ONLY the comma-separated list, nothing else."#,
log::info!("========================================");
// Use existing RAG method with enriched query
self.find_relevant_messages_rag(date, None, contact, limit)
self.find_relevant_messages_rag(date, None, contact, None, limit)
.await
}
@@ -995,7 +1070,7 @@ Return ONLY the summary, nothing else."#,
}
/// Convert SmsMessage objects to formatted strings and summarize with more detail
/// This is used for immediate context (±1 day) to preserve conversation details
/// This is used for immediate context (±2 days) to preserve conversation details
async fn summarize_context_from_messages(
&self,
messages: &[crate::ai::SmsMessage],
@@ -1058,17 +1133,25 @@ Return ONLY the summary, nothing else."#,
lat, lon
);
log::debug!("Reverse geocoding {}, {} via Nominatim", lat, lon);
let client = reqwest::Client::new();
let response = client
let response = match client
.get(&url)
.header("User-Agent", "ImageAPI/1.0") // Nominatim requires User-Agent
.send()
.await
.ok()?;
{
Ok(resp) => resp,
Err(e) => {
log::warn!("Geocoding network error for {}, {}: {}", lat, lon, e);
return None;
}
};
if !response.status().is_success() {
log::warn!(
"Geocoding failed for {}, {}: {}",
"Geocoding HTTP error for {}, {}: {}",
lat,
lon,
response.status()
@@ -1076,7 +1159,13 @@ Return ONLY the summary, nothing else."#,
return None;
}
let data: NominatimResponse = response.json().await.ok()?;
let data: NominatimResponse = match response.json().await {
Ok(d) => d,
Err(e) => {
log::warn!("Geocoding JSON parse error for {}, {}: {}", lat, lon, e);
return None;
}
};
// Try to build a concise location name
if let Some(addr) = data.address {
@@ -1093,11 +1182,22 @@ Return ONLY the summary, nothing else."#,
}
if !parts.is_empty() {
log::info!("Reverse geocoded {}, {} -> {}", lat, lon, parts.join(", "));
return Some(parts.join(", "));
}
}
// Fallback to display_name if structured address not available
if let Some(ref display_name) = data.display_name {
log::info!(
"Reverse geocoded {}, {} -> {} (display_name)",
lat,
lon,
display_name
);
} else {
log::warn!("Geocoding returned no address data for {}, {}", lat, lon);
}
data.display_name
}
}

View File

@@ -5,7 +5,7 @@ pub mod insight_generator;
pub mod ollama;
pub mod sms_client;
pub use daily_summary_job::generate_daily_summaries;
pub use daily_summary_job::{generate_daily_summaries, strip_summary_boilerplate};
pub use handlers::{
delete_insight_handler, generate_insight_handler, get_all_insights_handler,
get_available_models_handler, get_insight_handler,

View File

@@ -46,12 +46,12 @@ impl SmsApiClient {
) -> Result<Vec<SmsMessage>> {
use chrono::Duration;
// Calculate ±1 day range around the center timestamp
// Calculate ±2 days range around the center timestamp
let center_dt = chrono::DateTime::from_timestamp(center_timestamp, 0)
.ok_or_else(|| anyhow::anyhow!("Invalid timestamp"))?;
let start_dt = center_dt - Duration::days(1);
let end_dt = center_dt + Duration::days(1);
let start_dt = center_dt - Duration::days(2);
let end_dt = center_dt + Duration::days(2);
let start_ts = start_dt.timestamp();
let end_ts = end_dt.timestamp();
@@ -59,7 +59,7 @@ impl SmsApiClient {
// If contact specified, try fetching for that contact first
if let Some(contact_name) = contact {
log::info!(
"Fetching SMS for contact: {} (±1 day from {})",
"Fetching SMS for contact: {} (±2 days from {})",
contact_name,
center_dt.format("%Y-%m-%d %H:%M:%S")
);

View File

@@ -0,0 +1,282 @@
use anyhow::Result;
use clap::Parser;
use diesel::prelude::*;
use diesel::sql_query;
use diesel::sqlite::SqliteConnection;
use std::env;
#[derive(Parser, Debug)]
#[command(author, version, about = "Diagnose embedding distribution and identify problematic summaries", long_about = None)]
struct Args {
/// Show detailed per-summary statistics
#[arg(short, long, default_value_t = false)]
verbose: bool,
/// Number of top "central" summaries to show (ones that match everything)
#[arg(short, long, default_value_t = 10)]
top: usize,
/// Test a specific query to see what matches
#[arg(short, long)]
query: Option<String>,
}
#[derive(QueryableByName, Debug)]
struct EmbeddingRow {
#[diesel(sql_type = diesel::sql_types::Integer)]
id: i32,
#[diesel(sql_type = diesel::sql_types::Text)]
date: String,
#[diesel(sql_type = diesel::sql_types::Text)]
contact: String,
#[diesel(sql_type = diesel::sql_types::Text)]
summary: String,
#[diesel(sql_type = diesel::sql_types::Binary)]
embedding: Vec<u8>,
}
fn deserialize_embedding(bytes: &[u8]) -> Result<Vec<f32>> {
if bytes.len() % 4 != 0 {
return Err(anyhow::anyhow!("Invalid embedding byte length"));
}
let count = bytes.len() / 4;
let mut vec = Vec::with_capacity(count);
for chunk in bytes.chunks_exact(4) {
let float = f32::from_le_bytes([chunk[0], chunk[1], chunk[2], chunk[3]]);
vec.push(float);
}
Ok(vec)
}
fn cosine_similarity(a: &[f32], b: &[f32]) -> f32 {
if a.len() != b.len() {
return 0.0;
}
let dot_product: f32 = a.iter().zip(b.iter()).map(|(x, y)| x * y).sum();
let magnitude_a: f32 = a.iter().map(|x| x * x).sum::<f32>().sqrt();
let magnitude_b: f32 = b.iter().map(|x| x * x).sum::<f32>().sqrt();
if magnitude_a == 0.0 || magnitude_b == 0.0 {
return 0.0;
}
dot_product / (magnitude_a * magnitude_b)
}
fn main() -> Result<()> {
dotenv::dotenv().ok();
let args = Args::parse();
let database_url = env::var("DATABASE_URL").unwrap_or_else(|_| "auth.db".to_string());
println!("Connecting to database: {}", database_url);
let mut conn = SqliteConnection::establish(&database_url)?;
// Load all embeddings
println!("\nLoading embeddings from daily_conversation_summaries...");
let rows: Vec<EmbeddingRow> = sql_query(
"SELECT id, date, contact, summary, embedding FROM daily_conversation_summaries ORDER BY date"
)
.load(&mut conn)?;
println!("Found {} summaries with embeddings\n", rows.len());
if rows.is_empty() {
println!("No summaries found!");
return Ok(());
}
// Parse all embeddings
let mut embeddings: Vec<(i32, String, String, String, Vec<f32>)> = Vec::new();
for row in &rows {
match deserialize_embedding(&row.embedding) {
Ok(emb) => {
embeddings.push((
row.id,
row.date.clone(),
row.contact.clone(),
row.summary.clone(),
emb,
));
}
Err(e) => {
println!("Warning: Failed to parse embedding for id {}: {}", row.id, e);
}
}
}
println!("Successfully parsed {} embeddings\n", embeddings.len());
// Compute embedding statistics
println!("========================================");
println!("EMBEDDING STATISTICS");
println!("========================================\n");
// Check embedding variance (are values clustered or spread out?)
let first_emb = &embeddings[0].4;
let dim = first_emb.len();
println!("Embedding dimensions: {}", dim);
// Calculate mean and std dev per dimension
let mut dim_means: Vec<f32> = vec![0.0; dim];
let mut dim_vars: Vec<f32> = vec![0.0; dim];
for (_, _, _, _, emb) in &embeddings {
for (i, &val) in emb.iter().enumerate() {
dim_means[i] += val;
}
}
for m in &mut dim_means {
*m /= embeddings.len() as f32;
}
for (_, _, _, _, emb) in &embeddings {
for (i, &val) in emb.iter().enumerate() {
let diff = val - dim_means[i];
dim_vars[i] += diff * diff;
}
}
for v in &mut dim_vars {
*v = (*v / embeddings.len() as f32).sqrt();
}
let avg_std_dev: f32 = dim_vars.iter().sum::<f32>() / dim as f32;
let min_std_dev: f32 = dim_vars.iter().cloned().fold(f32::INFINITY, f32::min);
let max_std_dev: f32 = dim_vars.iter().cloned().fold(f32::NEG_INFINITY, f32::max);
println!("Per-dimension standard deviation:");
println!(" Average: {:.6}", avg_std_dev);
println!(" Min: {:.6}", min_std_dev);
println!(" Max: {:.6}", max_std_dev);
println!();
// Compute pairwise similarities
println!("Computing pairwise similarities (this may take a moment)...\n");
let mut all_similarities: Vec<f32> = Vec::new();
let mut per_embedding_avg: Vec<(usize, f32)> = Vec::new();
for i in 0..embeddings.len() {
let mut sum = 0.0;
let mut count = 0;
for j in 0..embeddings.len() {
if i != j {
let sim = cosine_similarity(&embeddings[i].4, &embeddings[j].4);
all_similarities.push(sim);
sum += sim;
count += 1;
}
}
per_embedding_avg.push((i, sum / count as f32));
}
// Sort similarities for percentile analysis
all_similarities.sort_by(|a, b| a.partial_cmp(b).unwrap());
let min_sim = all_similarities.first().copied().unwrap_or(0.0);
let max_sim = all_similarities.last().copied().unwrap_or(0.0);
let median_sim = all_similarities[all_similarities.len() / 2];
let p25 = all_similarities[all_similarities.len() / 4];
let p75 = all_similarities[3 * all_similarities.len() / 4];
let mean_sim: f32 = all_similarities.iter().sum::<f32>() / all_similarities.len() as f32;
println!("========================================");
println!("PAIRWISE SIMILARITY DISTRIBUTION");
println!("========================================\n");
println!("Total pairs analyzed: {}", all_similarities.len());
println!();
println!("Min similarity: {:.4}", min_sim);
println!("25th percentile: {:.4}", p25);
println!("Median similarity: {:.4}", median_sim);
println!("Mean similarity: {:.4}", mean_sim);
println!("75th percentile: {:.4}", p75);
println!("Max similarity: {:.4}", max_sim);
println!();
// Analyze distribution
let count_above_08 = all_similarities.iter().filter(|&&s| s > 0.8).count();
let count_above_07 = all_similarities.iter().filter(|&&s| s > 0.7).count();
let count_above_06 = all_similarities.iter().filter(|&&s| s > 0.6).count();
let count_above_05 = all_similarities.iter().filter(|&&s| s > 0.5).count();
let count_below_03 = all_similarities.iter().filter(|&&s| s < 0.3).count();
println!("Similarity distribution:");
println!(" > 0.8: {} ({:.1}%)", count_above_08, 100.0 * count_above_08 as f32 / all_similarities.len() as f32);
println!(" > 0.7: {} ({:.1}%)", count_above_07, 100.0 * count_above_07 as f32 / all_similarities.len() as f32);
println!(" > 0.6: {} ({:.1}%)", count_above_06, 100.0 * count_above_06 as f32 / all_similarities.len() as f32);
println!(" > 0.5: {} ({:.1}%)", count_above_05, 100.0 * count_above_05 as f32 / all_similarities.len() as f32);
println!(" < 0.3: {} ({:.1}%)", count_below_03, 100.0 * count_below_03 as f32 / all_similarities.len() as f32);
println!();
// Identify "central" embeddings (high average similarity to all others)
per_embedding_avg.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
println!("========================================");
println!("TOP {} MOST 'CENTRAL' SUMMARIES", args.top);
println!("(These match everything with high similarity)");
println!("========================================\n");
for (rank, (idx, avg_sim)) in per_embedding_avg.iter().take(args.top).enumerate() {
let (id, date, contact, summary, _) = &embeddings[*idx];
let preview: String = summary.chars().take(80).collect();
println!("{}. [id={}, avg_sim={:.4}]", rank + 1, id, avg_sim);
println!(" Date: {}, Contact: {}", date, contact);
println!(" Preview: {}...", preview.replace('\n', " "));
println!();
}
// Also show the least central (most unique)
println!("========================================");
println!("TOP {} MOST UNIQUE SUMMARIES", args.top);
println!("(These are most different from others)");
println!("========================================\n");
for (rank, (idx, avg_sim)) in per_embedding_avg.iter().rev().take(args.top).enumerate() {
let (id, date, contact, summary, _) = &embeddings[*idx];
let preview: String = summary.chars().take(80).collect();
println!("{}. [id={}, avg_sim={:.4}]", rank + 1, id, avg_sim);
println!(" Date: {}, Contact: {}", date, contact);
println!(" Preview: {}...", preview.replace('\n', " "));
println!();
}
// Diagnosis
println!("========================================");
println!("DIAGNOSIS");
println!("========================================\n");
if mean_sim > 0.7 {
println!("⚠️ HIGH AVERAGE SIMILARITY ({:.4})", mean_sim);
println!(" All embeddings are very similar to each other.");
println!(" This explains why the same summaries always match.");
println!();
println!(" Possible causes:");
println!(" 1. Summaries have similar structure/phrasing (e.g., all start with 'Summary:')");
println!(" 2. Embedding model isn't capturing semantic differences well");
println!(" 3. Daily conversations have similar topics (e.g., 'good morning', plans)");
println!();
println!(" Recommendations:");
println!(" 1. Try a different embedding model (mxbai-embed-large, bge-large)");
println!(" 2. Improve summary diversity by varying the prompt");
println!(" 3. Extract and embed only keywords/entities, not full summaries");
} else if mean_sim > 0.5 {
println!("⚡ MODERATE AVERAGE SIMILARITY ({:.4})", mean_sim);
println!(" Some clustering in embeddings, but some differentiation exists.");
println!();
println!(" The 'central' summaries above are likely dominating search results.");
println!(" Consider:");
println!(" 1. Filtering out summaries with very high centrality");
println!(" 2. Adding time-based weighting to prefer recent/relevant dates");
println!(" 3. Increasing the similarity threshold from 0.3 to 0.5");
} else {
println!("✅ GOOD EMBEDDING DIVERSITY ({:.4})", mean_sim);
println!(" Embeddings are well-differentiated.");
println!(" If same results keep appearing, the issue may be elsewhere.");
}
Ok(())
}

View File

@@ -0,0 +1,285 @@
use anyhow::Result;
use chrono::NaiveDate;
use clap::Parser;
use image_api::ai::{strip_summary_boilerplate, OllamaClient, SmsApiClient};
use image_api::database::{DailySummaryDao, InsertDailySummary, SqliteDailySummaryDao};
use std::env;
use std::sync::{Arc, Mutex};
#[derive(Parser, Debug)]
#[command(author, version, about = "Test daily summary generation with different models and prompts", long_about = None)]
struct Args {
/// Contact name to generate summaries for
#[arg(short, long)]
contact: String,
/// Start date (YYYY-MM-DD)
#[arg(short, long)]
start: String,
/// End date (YYYY-MM-DD)
#[arg(short, long)]
end: String,
/// Optional: Override the model to use (e.g., "qwen2.5:32b", "llama3.1:30b")
#[arg(short, long)]
model: Option<String>,
/// Test mode: Generate but don't save to database (shows output only)
#[arg(short = 't', long, default_value_t = false)]
test_mode: bool,
/// Show message count and preview
#[arg(short, long, default_value_t = false)]
verbose: bool,
}
#[tokio::main]
async fn main() -> Result<()> {
// Load .env file
dotenv::dotenv().ok();
// Initialize logging
env_logger::Builder::from_env(env_logger::Env::default().default_filter_or("info")).init();
let args = Args::parse();
// Parse dates
let start_date = NaiveDate::parse_from_str(&args.start, "%Y-%m-%d")
.expect("Invalid start date format. Use YYYY-MM-DD");
let end_date = NaiveDate::parse_from_str(&args.end, "%Y-%m-%d")
.expect("Invalid end date format. Use YYYY-MM-DD");
println!("========================================");
println!("Daily Summary Generation Test Tool");
println!("========================================");
println!("Contact: {}", args.contact);
println!("Date range: {} to {}", start_date, end_date);
println!("Days: {}", (end_date - start_date).num_days() + 1);
if let Some(ref model) = args.model {
println!("Model: {}", model);
} else {
println!(
"Model: {} (from env)",
env::var("OLLAMA_PRIMARY_MODEL")
.or_else(|_| env::var("OLLAMA_MODEL"))
.unwrap_or_else(|_| "nemotron-3-nano:30b".to_string())
);
}
if args.test_mode {
println!("⚠ TEST MODE: Results will NOT be saved to database");
}
println!("========================================");
println!();
// Initialize AI clients
let ollama_primary_url = env::var("OLLAMA_PRIMARY_URL")
.or_else(|_| env::var("OLLAMA_URL"))
.unwrap_or_else(|_| "http://localhost:11434".to_string());
let ollama_fallback_url = env::var("OLLAMA_FALLBACK_URL").ok();
// Use provided model or fallback to env
let model_to_use = args.model.clone().unwrap_or_else(|| {
env::var("OLLAMA_PRIMARY_MODEL")
.or_else(|_| env::var("OLLAMA_MODEL"))
.unwrap_or_else(|_| "nemotron-3-nano:30b".to_string())
});
let ollama = OllamaClient::new(
ollama_primary_url,
ollama_fallback_url.clone(),
model_to_use.clone(),
Some(model_to_use), // Use same model for fallback
);
let sms_api_url =
env::var("SMS_API_URL").unwrap_or_else(|_| "http://localhost:8000".to_string());
let sms_api_token = env::var("SMS_API_TOKEN").ok();
let sms_client = SmsApiClient::new(sms_api_url, sms_api_token);
// Initialize DAO
let summary_dao: Arc<Mutex<Box<dyn DailySummaryDao>>> =
Arc::new(Mutex::new(Box::new(SqliteDailySummaryDao::new())));
// Fetch messages for contact
println!("Fetching messages for {}...", args.contact);
let all_messages = sms_client
.fetch_all_messages_for_contact(&args.contact)
.await?;
println!(
"Found {} total messages for {}",
all_messages.len(),
args.contact
);
println!();
// Filter to date range and group by date
let mut messages_by_date = std::collections::HashMap::new();
for msg in all_messages {
if let Some(dt) = chrono::DateTime::from_timestamp(msg.timestamp, 0) {
let date = dt.date_naive();
if date >= start_date && date <= end_date {
messages_by_date
.entry(date)
.or_insert_with(Vec::new)
.push(msg);
}
}
}
if messages_by_date.is_empty() {
println!("⚠ No messages found in date range");
return Ok(());
}
println!("Found {} days with messages", messages_by_date.len());
println!();
// Sort dates
let mut dates: Vec<NaiveDate> = messages_by_date.keys().cloned().collect();
dates.sort();
// Process each day
for (idx, date) in dates.iter().enumerate() {
let messages = messages_by_date.get(date).unwrap();
let date_str = date.format("%Y-%m-%d").to_string();
let weekday = date.format("%A");
println!("━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━");
println!(
"Day {}/{}: {} ({}) - {} messages",
idx + 1,
dates.len(),
date_str,
weekday,
messages.len()
);
println!("━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━");
if args.verbose {
println!("\nMessage preview:");
for (i, msg) in messages.iter().take(3).enumerate() {
let sender = if msg.is_sent { "Me" } else { &msg.contact };
let preview = msg.body.chars().take(60).collect::<String>();
println!(" {}. {}: {}...", i + 1, sender, preview);
}
if messages.len() > 3 {
println!(" ... and {} more", messages.len() - 3);
}
println!();
}
// Format messages for LLM
let messages_text: String = messages
.iter()
.take(200)
.map(|m| {
if m.is_sent {
format!("Me: {}", m.body)
} else {
format!("{}: {}", m.contact, m.body)
}
})
.collect::<Vec<_>>()
.join("\n");
let prompt = format!(
r#"Summarize this day's conversation between me and {}.
CRITICAL FORMAT RULES:
- Do NOT start with "Based on the conversation..." or "Here is a summary..." or similar preambles
- Do NOT repeat the date at the beginning
- Start DIRECTLY with the content - begin with a person's name or action
- Write in past tense, as if recording what happened
NARRATIVE (3-5 sentences):
- What specific topics, activities, or events were discussed?
- What places, people, or organizations were mentioned?
- What plans were made or decisions discussed?
- Clearly distinguish between what "I" did versus what {} did
KEYWORDS (comma-separated):
5-10 specific keywords that capture this conversation's unique content:
- Proper nouns (people, places, brands)
- Specific activities ("drum corps audition" not just "music")
- Distinctive terms that make this day unique
Date: {} ({})
Messages:
{}
YOUR RESPONSE (follow this format EXACTLY):
Summary: [Start directly with content, NO preamble]
Keywords: [specific, unique terms]"#,
args.contact,
args.contact,
date.format("%B %d, %Y"),
weekday,
messages_text
);
println!("Generating summary...");
let summary = ollama
.generate(
&prompt,
Some("You are a conversation summarizer. Create clear, factual summaries with precise subject attribution AND extract distinctive keywords. Focus on specific, unique terms that differentiate this conversation from others."),
)
.await?;
println!("\n📝 GENERATED SUMMARY:");
println!("─────────────────────────────────────────");
println!("{}", summary.trim());
println!("─────────────────────────────────────────");
if !args.test_mode {
println!("\nStripping boilerplate for embedding...");
let stripped = strip_summary_boilerplate(&summary);
println!("Stripped: {}...", stripped.chars().take(80).collect::<String>());
println!("\nGenerating embedding...");
let embedding = ollama.generate_embedding(&stripped).await?;
println!("✓ Embedding generated ({} dimensions)", embedding.len());
println!("Saving to database...");
let insert = InsertDailySummary {
date: date_str.clone(),
contact: args.contact.clone(),
summary: summary.trim().to_string(),
message_count: messages.len() as i32,
embedding,
created_at: chrono::Utc::now().timestamp(),
// model_version: "nomic-embed-text:v1.5".to_string(),
model_version: "mxbai-embed-large:335m".to_string(),
};
let mut dao = summary_dao.lock().expect("Unable to lock DailySummaryDao");
let context = opentelemetry::Context::new();
match dao.store_summary(&context, insert) {
Ok(_) => println!("✓ Saved to database"),
Err(e) => println!("✗ Database error: {:?}", e),
}
} else {
println!("\n⚠ TEST MODE: Not saved to database");
}
println!();
// Rate limiting between days
if idx < dates.len() - 1 {
tokio::time::sleep(tokio::time::Duration::from_millis(500)).await;
}
}
println!("========================================");
println!("✓ Complete!");
println!("Processed {} days", dates.len());
println!("========================================");
Ok(())
}

View File

@@ -1,3 +1,4 @@
use chrono::NaiveDate;
use diesel::prelude::*;
use diesel::sqlite::SqliteConnection;
use serde::Serialize;
@@ -47,6 +48,17 @@ pub trait DailySummaryDao: Sync + Send {
limit: usize,
) -> Result<Vec<DailySummary>, DbError>;
/// Find semantically similar daily summaries with time-based weighting
/// Combines cosine similarity with temporal proximity to target_date
/// Final score = similarity * time_weight, where time_weight decays with distance from target_date
fn find_similar_summaries_with_time_weight(
&mut self,
context: &opentelemetry::Context,
query_embedding: &[f32],
target_date: &str,
limit: usize,
) -> Result<Vec<DailySummary>, DbError>;
/// Check if a summary exists for a given date and contact
fn summary_exists(
&mut self,
@@ -231,14 +243,22 @@ impl DailySummaryDao for SqliteDailySummaryDao {
// Sort by similarity (highest first)
scored_summaries.sort_by(|a, b| b.0.partial_cmp(&a.0).unwrap_or(std::cmp::Ordering::Equal));
// Filter out poor matches (similarity < 0.3 is likely noise)
scored_summaries.retain(|(similarity, _)| *similarity >= 0.3);
// Log similarity distribution
if !scored_summaries.is_empty() {
let top_score = scored_summaries.first().map(|(s, _)| *s).unwrap_or(0.0);
let median_score = scored_summaries.get(scored_summaries.len() / 2).map(|(s, _)| *s).unwrap_or(0.0);
log::info!(
"Daily summary similarity - Top: {:.3}, Median: {:.3}, Count: {}",
scored_summaries.first().map(|(s, _)| *s).unwrap_or(0.0),
scored_summaries.get(scored_summaries.len() / 2).map(|(s, _)| *s).unwrap_or(0.0),
"Daily summary similarity - Top: {:.3}, Median: {:.3}, Count: {} (after 0.3 threshold)",
top_score,
median_score,
scored_summaries.len()
);
} else {
log::warn!("No daily summaries met the 0.3 similarity threshold");
}
// Take top N and log matches
@@ -262,6 +282,128 @@ impl DailySummaryDao for SqliteDailySummaryDao {
.map_err(|_| DbError::new(DbErrorKind::QueryError))
}
fn find_similar_summaries_with_time_weight(
&mut self,
context: &opentelemetry::Context,
query_embedding: &[f32],
target_date: &str,
limit: usize,
) -> Result<Vec<DailySummary>, DbError> {
trace_db_call(context, "query", "find_similar_summaries_with_time_weight", |_span| {
let mut conn = self.connection.lock().expect("Unable to get DailySummaryDao");
if query_embedding.len() != 768 {
return Err(anyhow::anyhow!(
"Invalid query embedding dimensions: {} (expected 768)",
query_embedding.len()
));
}
// Parse target date
let target = NaiveDate::parse_from_str(target_date, "%Y-%m-%d")
.map_err(|e| anyhow::anyhow!("Invalid target date: {}", e))?;
// Load all summaries with embeddings
let results = diesel::sql_query(
"SELECT id, date, contact, summary, message_count, embedding, created_at, model_version
FROM daily_conversation_summaries"
)
.load::<DailySummaryWithVectorRow>(conn.deref_mut())
.map_err(|e| anyhow::anyhow!("Query error: {:?}", e))?;
log::info!("Loaded {} daily summaries for time-weighted similarity (target: {})", results.len(), target_date);
// Compute time-weighted similarity for each summary
// Score = cosine_similarity * time_weight
// time_weight = 1 / (1 + days_distance/30) - decays with ~30 day half-life
let mut scored_summaries: Vec<(f32, f32, i64, DailySummary)> = results
.into_iter()
.filter_map(|row| {
match Self::deserialize_vector(&row.embedding) {
Ok(embedding) => {
let similarity = Self::cosine_similarity(query_embedding, &embedding);
// Calculate time weight
let summary_date = NaiveDate::parse_from_str(&row.date, "%Y-%m-%d").ok()?;
let days_distance = (target - summary_date).num_days().abs();
// Exponential decay with 30-day half-life
// At 0 days: weight = 1.0
// At 30 days: weight = 0.5
// At 60 days: weight = 0.25
// At 365 days: weight ~= 0.0001
let time_weight = 0.5_f32.powf(days_distance as f32 / 30.0);
// Combined score - but ensure semantic similarity still matters
// We use sqrt to soften the time weight's impact
let combined_score = similarity * time_weight.sqrt();
Some((
combined_score,
similarity,
days_distance,
DailySummary {
id: row.id,
date: row.date,
contact: row.contact,
summary: row.summary,
message_count: row.message_count,
created_at: row.created_at,
model_version: row.model_version,
},
))
}
Err(e) => {
log::warn!("Failed to deserialize embedding for summary {}: {:?}", row.id, e);
None
}
}
})
.collect();
// Sort by combined score (highest first)
scored_summaries.sort_by(|a, b| b.0.partial_cmp(&a.0).unwrap_or(std::cmp::Ordering::Equal));
// Filter out poor matches (base similarity < 0.5 - stricter than before since we have time weighting)
scored_summaries.retain(|(_, similarity, _, _)| *similarity >= 0.5);
// Log similarity distribution
if !scored_summaries.is_empty() {
let (top_combined, top_sim, top_days, _) = &scored_summaries[0];
log::info!(
"Time-weighted similarity - Top: combined={:.3} (sim={:.3}, days={}), Count: {} matches",
top_combined,
top_sim,
top_days,
scored_summaries.len()
);
} else {
log::warn!("No daily summaries met the 0.5 similarity threshold");
}
// Take top N and log matches
let top_results: Vec<DailySummary> = scored_summaries
.into_iter()
.take(limit)
.map(|(combined, similarity, days, summary)| {
log::info!(
"Summary match: combined={:.3} (sim={:.3}, days={}), date={}, contact={}, summary=\"{}\"",
combined,
similarity,
days,
summary.date,
summary.contact,
summary.summary.chars().take(80).collect::<String>()
);
summary
})
.collect();
Ok(top_results)
})
.map_err(|_| DbError::new(DbErrorKind::QueryError))
}
fn summary_exists(
&mut self,
context: &opentelemetry::Context,

View File

@@ -18,15 +18,11 @@ pub mod models;
pub mod schema;
pub mod search_dao;
pub use calendar_dao::{
CalendarEventDao, SqliteCalendarEventDao,
};
pub use calendar_dao::{CalendarEventDao, SqliteCalendarEventDao};
pub use daily_summary_dao::{DailySummaryDao, InsertDailySummary, SqliteDailySummaryDao};
pub use embeddings_dao::{EmbeddingDao, InsertMessageEmbedding};
pub use insights_dao::{InsightDao, SqliteInsightDao};
pub use location_dao::{
LocationHistoryDao, SqliteLocationHistoryDao,
};
pub use location_dao::{LocationHistoryDao, SqliteLocationHistoryDao};
pub use search_dao::{SearchHistoryDao, SqliteSearchHistoryDao};
pub trait UserDao {