Enhanced Insights with daily summary embeddings
Bump to 0.5.0. Added daily summary generation job
This commit is contained in:
5
Cargo.lock
generated
5
Cargo.lock
generated
@@ -1689,7 +1689,7 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "image-api"
|
||||
version = "0.4.1"
|
||||
version = "0.5.0"
|
||||
dependencies = [
|
||||
"actix",
|
||||
"actix-cors",
|
||||
@@ -1713,6 +1713,7 @@ dependencies = [
|
||||
"jsonwebtoken",
|
||||
"kamadak-exif",
|
||||
"lazy_static",
|
||||
"libsqlite3-sys",
|
||||
"log",
|
||||
"opentelemetry",
|
||||
"opentelemetry-appender-log",
|
||||
@@ -1731,6 +1732,7 @@ dependencies = [
|
||||
"tokio",
|
||||
"urlencoding",
|
||||
"walkdir",
|
||||
"zerocopy",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -1943,6 +1945,7 @@ version = "0.35.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "133c182a6a2c87864fe97778797e46c7e999672690dc9fa3ee8e241aa4a9c13f"
|
||||
dependencies = [
|
||||
"cc",
|
||||
"pkg-config",
|
||||
"vcpkg",
|
||||
]
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "image-api"
|
||||
version = "0.4.1"
|
||||
version = "0.5.0"
|
||||
authors = ["Cameron Cordes <cameronc.dev@gmail.com>"]
|
||||
edition = "2024"
|
||||
|
||||
@@ -23,6 +23,7 @@ jsonwebtoken = "9.3.0"
|
||||
serde = "1"
|
||||
serde_json = "1"
|
||||
diesel = { version = "2.2.10", features = ["sqlite"] }
|
||||
libsqlite3-sys = { version = "0.35", features = ["bundled"] }
|
||||
diesel_migrations = "2.2.0"
|
||||
chrono = "0.4"
|
||||
clap = { version = "4.5", features = ["derive"] }
|
||||
@@ -50,3 +51,4 @@ regex = "1.11.1"
|
||||
exif = { package = "kamadak-exif", version = "0.6.1" }
|
||||
reqwest = { version = "0.12", features = ["json"] }
|
||||
urlencoding = "2.1"
|
||||
zerocopy = "0.8"
|
||||
|
||||
@@ -0,0 +1,3 @@
|
||||
-- Drop tables in reverse order
|
||||
DROP TABLE IF EXISTS vec_message_embeddings;
|
||||
DROP TABLE IF EXISTS message_embeddings;
|
||||
19
migrations/2026-01-04-000000_add_message_embeddings/up.sql
Normal file
19
migrations/2026-01-04-000000_add_message_embeddings/up.sql
Normal file
@@ -0,0 +1,19 @@
|
||||
-- Table for storing message metadata and embeddings
|
||||
-- Embeddings stored as BLOB for proof-of-concept
|
||||
-- For production with many contacts, consider using sqlite-vec extension
|
||||
CREATE TABLE message_embeddings (
|
||||
id INTEGER PRIMARY KEY NOT NULL,
|
||||
contact TEXT NOT NULL,
|
||||
body TEXT NOT NULL,
|
||||
timestamp BIGINT NOT NULL,
|
||||
is_sent BOOLEAN NOT NULL,
|
||||
embedding BLOB NOT NULL,
|
||||
created_at BIGINT NOT NULL,
|
||||
model_version TEXT NOT NULL,
|
||||
-- Prevent duplicate embeddings for the same message
|
||||
UNIQUE(contact, body, timestamp)
|
||||
);
|
||||
|
||||
-- Indexes for efficient queries
|
||||
CREATE INDEX idx_message_embeddings_contact ON message_embeddings(contact);
|
||||
CREATE INDEX idx_message_embeddings_timestamp ON message_embeddings(timestamp);
|
||||
@@ -0,0 +1 @@
|
||||
DROP TABLE daily_conversation_summaries;
|
||||
19
migrations/2026-01-04-060000_add_daily_summaries/up.sql
Normal file
19
migrations/2026-01-04-060000_add_daily_summaries/up.sql
Normal file
@@ -0,0 +1,19 @@
|
||||
-- Daily conversation summaries for improved RAG quality
|
||||
-- Each row = one day's conversation with a contact, summarized by LLM and embedded
|
||||
|
||||
CREATE TABLE daily_conversation_summaries (
|
||||
id INTEGER PRIMARY KEY NOT NULL,
|
||||
date TEXT NOT NULL, -- ISO date "2024-08-15"
|
||||
contact TEXT NOT NULL, -- Contact name
|
||||
summary TEXT NOT NULL, -- LLM-generated 3-5 sentence summary
|
||||
message_count INTEGER NOT NULL, -- Number of messages in this day
|
||||
embedding BLOB NOT NULL, -- 768-dim vector of the summary
|
||||
created_at BIGINT NOT NULL, -- When this summary was generated
|
||||
model_version TEXT NOT NULL, -- "nomic-embed-text:v1.5"
|
||||
UNIQUE(date, contact)
|
||||
);
|
||||
|
||||
-- Indexes for efficient querying
|
||||
CREATE INDEX idx_daily_summaries_date ON daily_conversation_summaries(date);
|
||||
CREATE INDEX idx_daily_summaries_contact ON daily_conversation_summaries(contact);
|
||||
CREATE INDEX idx_daily_summaries_date_contact ON daily_conversation_summaries(date, contact);
|
||||
289
src/ai/daily_summary_job.rs
Normal file
289
src/ai/daily_summary_job.rs
Normal file
@@ -0,0 +1,289 @@
|
||||
use anyhow::Result;
|
||||
use chrono::{NaiveDate, Utc};
|
||||
use opentelemetry::trace::{Span, Status, TraceContextExt, Tracer};
|
||||
use opentelemetry::KeyValue;
|
||||
use std::collections::HashMap;
|
||||
use std::sync::{Arc, Mutex};
|
||||
use tokio::time::sleep;
|
||||
|
||||
use crate::ai::{OllamaClient, SmsApiClient, SmsMessage};
|
||||
use crate::database::{DailySummaryDao, InsertDailySummary};
|
||||
use crate::otel::global_tracer;
|
||||
|
||||
/// Generate and embed daily conversation summaries for a date range
|
||||
/// Default: August 2024 ±30 days (July 1 - September 30, 2024)
|
||||
pub async fn generate_daily_summaries(
|
||||
contact: &str,
|
||||
start_date: Option<NaiveDate>,
|
||||
end_date: Option<NaiveDate>,
|
||||
ollama: &OllamaClient,
|
||||
sms_client: &SmsApiClient,
|
||||
summary_dao: Arc<Mutex<Box<dyn DailySummaryDao>>>,
|
||||
) -> Result<()> {
|
||||
let tracer = global_tracer();
|
||||
|
||||
// Get current context (empty in background task) and start span with it
|
||||
let current_cx = opentelemetry::Context::current();
|
||||
let mut span = tracer.start_with_context("ai.daily_summary.generate_batch", ¤t_cx);
|
||||
span.set_attribute(KeyValue::new("contact", contact.to_string()));
|
||||
|
||||
// Create context with this span for child operations
|
||||
let parent_cx = current_cx.with_span(span);
|
||||
|
||||
// Default to August 2024 ±30 days
|
||||
let start = start_date.unwrap_or_else(|| NaiveDate::from_ymd_opt(2024, 7, 1).unwrap());
|
||||
let end = end_date.unwrap_or_else(|| NaiveDate::from_ymd_opt(2024, 9, 30).unwrap());
|
||||
|
||||
parent_cx.span().set_attribute(KeyValue::new("start_date", start.to_string()));
|
||||
parent_cx.span().set_attribute(KeyValue::new("end_date", end.to_string()));
|
||||
parent_cx.span().set_attribute(KeyValue::new("date_range_days", (end - start).num_days() + 1));
|
||||
|
||||
log::info!(
|
||||
"========================================");
|
||||
log::info!("Starting daily summary generation for {}", contact);
|
||||
log::info!("Date range: {} to {} ({} days)",
|
||||
start, end, (end - start).num_days() + 1
|
||||
);
|
||||
log::info!("========================================");
|
||||
|
||||
// Fetch all messages for the contact in the date range
|
||||
log::info!("Fetching messages for date range...");
|
||||
let _start_timestamp = start
|
||||
.and_hms_opt(0, 0, 0)
|
||||
.unwrap()
|
||||
.and_utc()
|
||||
.timestamp();
|
||||
let _end_timestamp = end
|
||||
.and_hms_opt(23, 59, 59)
|
||||
.unwrap()
|
||||
.and_utc()
|
||||
.timestamp();
|
||||
|
||||
let all_messages = sms_client
|
||||
.fetch_all_messages_for_contact(contact)
|
||||
.await?;
|
||||
|
||||
// Filter to date range and group by date
|
||||
let mut messages_by_date: HashMap<NaiveDate, Vec<SmsMessage>> = HashMap::new();
|
||||
|
||||
for msg in all_messages {
|
||||
let msg_dt = chrono::DateTime::from_timestamp(msg.timestamp, 0);
|
||||
if let Some(dt) = msg_dt {
|
||||
let date = dt.date_naive();
|
||||
if date >= start && date <= end {
|
||||
messages_by_date
|
||||
.entry(date)
|
||||
.or_insert_with(Vec::new)
|
||||
.push(msg);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
log::info!(
|
||||
"Grouped messages into {} days with activity",
|
||||
messages_by_date.len()
|
||||
);
|
||||
|
||||
if messages_by_date.is_empty() {
|
||||
log::warn!("No messages found in date range");
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
// Sort dates for ordered processing
|
||||
let mut dates: Vec<NaiveDate> = messages_by_date.keys().cloned().collect();
|
||||
dates.sort();
|
||||
|
||||
let total_days = dates.len();
|
||||
let mut processed = 0;
|
||||
let mut skipped = 0;
|
||||
let mut failed = 0;
|
||||
|
||||
log::info!("Processing {} days with messages...", total_days);
|
||||
|
||||
for (idx, date) in dates.iter().enumerate() {
|
||||
let messages = messages_by_date.get(date).unwrap();
|
||||
let date_str = date.format("%Y-%m-%d").to_string();
|
||||
|
||||
// Check if summary already exists
|
||||
{
|
||||
let mut dao = summary_dao.lock().expect("Unable to lock DailySummaryDao");
|
||||
let otel_context = opentelemetry::Context::new();
|
||||
|
||||
if dao.summary_exists(&otel_context, &date_str, contact).unwrap_or(false) {
|
||||
skipped += 1;
|
||||
if idx % 10 == 0 {
|
||||
log::info!(
|
||||
"Progress: {}/{} ({} processed, {} skipped)",
|
||||
idx + 1,
|
||||
total_days,
|
||||
processed,
|
||||
skipped
|
||||
);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// Generate summary for this day
|
||||
match generate_and_store_daily_summary(
|
||||
&parent_cx,
|
||||
date,
|
||||
contact,
|
||||
messages,
|
||||
ollama,
|
||||
summary_dao.clone(),
|
||||
)
|
||||
.await
|
||||
{
|
||||
Ok(_) => {
|
||||
processed += 1;
|
||||
log::info!(
|
||||
"✓ {}/{}: {} ({} messages)",
|
||||
idx + 1,
|
||||
total_days,
|
||||
date_str,
|
||||
messages.len()
|
||||
);
|
||||
}
|
||||
Err(e) => {
|
||||
failed += 1;
|
||||
log::error!("✗ Failed to process {}: {:?}", date_str, e);
|
||||
}
|
||||
}
|
||||
|
||||
// Rate limiting: sleep 500ms between summaries
|
||||
if idx < total_days - 1 {
|
||||
sleep(std::time::Duration::from_millis(500)).await;
|
||||
}
|
||||
|
||||
// Progress logging every 10 days
|
||||
if idx % 10 == 0 && idx > 0 {
|
||||
log::info!(
|
||||
"Progress: {}/{} ({} processed, {} skipped, {} failed)",
|
||||
idx + 1,
|
||||
total_days,
|
||||
processed,
|
||||
skipped,
|
||||
failed
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
log::info!("========================================");
|
||||
log::info!("Daily summary generation complete!");
|
||||
log::info!("Processed: {}, Skipped: {}, Failed: {}", processed, skipped, failed);
|
||||
log::info!("========================================");
|
||||
|
||||
// Record final metrics in span
|
||||
parent_cx.span().set_attribute(KeyValue::new("days_processed", processed as i64));
|
||||
parent_cx.span().set_attribute(KeyValue::new("days_skipped", skipped as i64));
|
||||
parent_cx.span().set_attribute(KeyValue::new("days_failed", failed as i64));
|
||||
parent_cx.span().set_attribute(KeyValue::new("total_days", total_days as i64));
|
||||
|
||||
if failed > 0 {
|
||||
parent_cx.span().set_status(Status::error(format!("{} days failed to process", failed)));
|
||||
} else {
|
||||
parent_cx.span().set_status(Status::Ok);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Generate and store a single day's summary
|
||||
async fn generate_and_store_daily_summary(
|
||||
parent_cx: &opentelemetry::Context,
|
||||
date: &NaiveDate,
|
||||
contact: &str,
|
||||
messages: &[SmsMessage],
|
||||
ollama: &OllamaClient,
|
||||
summary_dao: Arc<Mutex<Box<dyn DailySummaryDao>>>,
|
||||
) -> Result<()> {
|
||||
let tracer = global_tracer();
|
||||
let mut span = tracer.start_with_context("ai.daily_summary.generate_single", parent_cx);
|
||||
span.set_attribute(KeyValue::new("date", date.to_string()));
|
||||
span.set_attribute(KeyValue::new("contact", contact.to_string()));
|
||||
span.set_attribute(KeyValue::new("message_count", messages.len() as i64));
|
||||
|
||||
// Format messages for LLM
|
||||
let messages_text: String = messages
|
||||
.iter()
|
||||
.take(200) // Limit to 200 messages per day to avoid token overflow
|
||||
.map(|m| {
|
||||
if m.is_sent {
|
||||
format!("Me: {}", m.body)
|
||||
} else {
|
||||
format!("{}: {}", m.contact, m.body)
|
||||
}
|
||||
})
|
||||
.collect::<Vec<_>>()
|
||||
.join("\n");
|
||||
|
||||
let weekday = date.format("%A");
|
||||
|
||||
let prompt = format!(
|
||||
r#"Summarize this day's conversation in 3-5 sentences. Focus on:
|
||||
- Key topics, activities, and events discussed
|
||||
- Places, people, or organizations mentioned
|
||||
- Plans made or decisions discussed
|
||||
- Overall mood or themes of the day
|
||||
|
||||
IMPORTANT: Clearly distinguish between what "I" or "Me" did versus what {} did.
|
||||
Always explicitly attribute actions, plans, and activities to the correct person.
|
||||
Use "I" or "Me" for my actions and "{}" for their actions.
|
||||
|
||||
Date: {} ({})
|
||||
Messages:
|
||||
{}
|
||||
|
||||
Write a natural, informative summary with clear subject attribution.
|
||||
Summary:"#,
|
||||
contact,
|
||||
contact,
|
||||
date.format("%B %d, %Y"),
|
||||
weekday,
|
||||
messages_text
|
||||
);
|
||||
|
||||
// Generate summary with LLM
|
||||
let summary = ollama
|
||||
.generate(
|
||||
&prompt,
|
||||
Some("You are a conversation summarizer. Create clear, factual summaries that maintain precise subject attribution - clearly distinguishing who said or did what."),
|
||||
)
|
||||
.await?;
|
||||
|
||||
log::debug!("Generated summary for {}: {}", date, summary.chars().take(100).collect::<String>());
|
||||
|
||||
span.set_attribute(KeyValue::new("summary_length", summary.len() as i64));
|
||||
|
||||
// Embed the summary
|
||||
let embedding = ollama.generate_embedding(&summary).await?;
|
||||
|
||||
span.set_attribute(KeyValue::new("embedding_dimensions", embedding.len() as i64));
|
||||
|
||||
// Store in database
|
||||
let insert = InsertDailySummary {
|
||||
date: date.format("%Y-%m-%d").to_string(),
|
||||
contact: contact.to_string(),
|
||||
summary: summary.trim().to_string(),
|
||||
message_count: messages.len() as i32,
|
||||
embedding,
|
||||
created_at: Utc::now().timestamp(),
|
||||
model_version: "nomic-embed-text:v1.5".to_string(),
|
||||
};
|
||||
|
||||
// Create context from current span for DB operation
|
||||
let child_cx = opentelemetry::Context::current_with_span(span);
|
||||
|
||||
let mut dao = summary_dao.lock().expect("Unable to lock DailySummaryDao");
|
||||
let result = dao.store_summary(&child_cx, insert)
|
||||
.map_err(|e| anyhow::anyhow!("Failed to store summary: {:?}", e));
|
||||
|
||||
match &result {
|
||||
Ok(_) => child_cx.span().set_status(Status::Ok),
|
||||
Err(e) => child_cx.span().set_status(Status::error(e.to_string())),
|
||||
}
|
||||
|
||||
result?;
|
||||
Ok(())
|
||||
}
|
||||
213
src/ai/embedding_job.rs
Normal file
213
src/ai/embedding_job.rs
Normal file
@@ -0,0 +1,213 @@
|
||||
use anyhow::Result;
|
||||
use chrono::Utc;
|
||||
use std::sync::{Arc, Mutex};
|
||||
use tokio::time::{sleep, Duration};
|
||||
|
||||
use crate::ai::{OllamaClient, SmsApiClient};
|
||||
use crate::database::{EmbeddingDao, InsertMessageEmbedding};
|
||||
|
||||
/// Background job to embed messages for a specific contact
|
||||
/// This function is idempotent - it checks if embeddings already exist before processing
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `contact` - The contact name to embed messages for (e.g., "Amanda")
|
||||
/// * `ollama` - Ollama client for generating embeddings
|
||||
/// * `sms_client` - SMS API client for fetching messages
|
||||
/// * `embedding_dao` - DAO for storing embeddings in the database
|
||||
///
|
||||
/// # Returns
|
||||
/// Ok(()) on success, Err on failure
|
||||
pub async fn embed_contact_messages(
|
||||
contact: &str,
|
||||
ollama: &OllamaClient,
|
||||
sms_client: &SmsApiClient,
|
||||
embedding_dao: Arc<Mutex<Box<dyn EmbeddingDao>>>,
|
||||
) -> Result<()> {
|
||||
log::info!("Starting message embedding job for contact: {}", contact);
|
||||
|
||||
let otel_context = opentelemetry::Context::new();
|
||||
|
||||
// Check existing embeddings count
|
||||
let existing_count = {
|
||||
let mut dao = embedding_dao.lock().expect("Unable to lock EmbeddingDao");
|
||||
dao.get_message_count(&otel_context, contact)
|
||||
.unwrap_or(0)
|
||||
};
|
||||
|
||||
if existing_count > 0 {
|
||||
log::info!(
|
||||
"Contact '{}' already has {} embeddings, will check for new messages to embed",
|
||||
contact,
|
||||
existing_count
|
||||
);
|
||||
}
|
||||
|
||||
log::info!("Fetching all messages for contact: {}", contact);
|
||||
|
||||
// Fetch all messages for the contact
|
||||
let messages = sms_client
|
||||
.fetch_all_messages_for_contact(contact)
|
||||
.await?;
|
||||
|
||||
let total_messages = messages.len();
|
||||
log::info!("Fetched {} messages for contact '{}'", total_messages, contact);
|
||||
|
||||
if total_messages == 0 {
|
||||
log::warn!("No messages found for contact '{}', nothing to embed", contact);
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
// Filter out messages that already have embeddings and short/generic messages
|
||||
log::info!("Filtering out messages that already have embeddings and short messages...");
|
||||
let min_message_length = 30; // Skip short messages like "Thanks!" or "Yeah, it was :)"
|
||||
let messages_to_embed: Vec<&crate::ai::SmsMessage> = {
|
||||
let mut dao = embedding_dao.lock().expect("Unable to lock EmbeddingDao");
|
||||
messages.iter()
|
||||
.filter(|msg| {
|
||||
// Filter out short messages
|
||||
if msg.body.len() < min_message_length {
|
||||
return false;
|
||||
}
|
||||
// Filter out already embedded messages
|
||||
!dao.message_exists(&otel_context, contact, &msg.body, msg.timestamp)
|
||||
.unwrap_or(false)
|
||||
})
|
||||
.collect()
|
||||
};
|
||||
|
||||
let skipped = total_messages - messages_to_embed.len();
|
||||
let to_embed = messages_to_embed.len();
|
||||
|
||||
log::info!(
|
||||
"Found {} messages to embed ({} already embedded)",
|
||||
to_embed,
|
||||
skipped
|
||||
);
|
||||
|
||||
if to_embed == 0 {
|
||||
log::info!("All messages already embedded for contact '{}'", contact);
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
// Process messages in batches
|
||||
let batch_size = 128; // Embed 128 messages per API call
|
||||
let mut successful = 0;
|
||||
let mut failed = 0;
|
||||
|
||||
for (batch_idx, batch) in messages_to_embed.chunks(batch_size).enumerate() {
|
||||
let batch_start = batch_idx * batch_size;
|
||||
let batch_end = batch_start + batch.len();
|
||||
|
||||
log::info!(
|
||||
"Processing batch {}/{}: messages {}-{} ({:.1}% complete)",
|
||||
batch_idx + 1,
|
||||
(to_embed + batch_size - 1) / batch_size,
|
||||
batch_start + 1,
|
||||
batch_end,
|
||||
(batch_end as f64 / to_embed as f64) * 100.0
|
||||
);
|
||||
|
||||
match embed_message_batch(
|
||||
batch,
|
||||
contact,
|
||||
ollama,
|
||||
embedding_dao.clone(),
|
||||
)
|
||||
.await
|
||||
{
|
||||
Ok(count) => {
|
||||
successful += count;
|
||||
log::debug!("Successfully embedded {} messages in batch", count);
|
||||
}
|
||||
Err(e) => {
|
||||
failed += batch.len();
|
||||
log::error!("Failed to embed batch: {:?}", e);
|
||||
// Continue processing despite failures
|
||||
}
|
||||
}
|
||||
|
||||
// Small delay between batches to avoid overwhelming Ollama
|
||||
if batch_end < to_embed {
|
||||
sleep(Duration::from_millis(500)).await;
|
||||
}
|
||||
}
|
||||
|
||||
log::info!(
|
||||
"Message embedding job complete for '{}': {}/{} new embeddings created ({} already embedded, {} failed)",
|
||||
contact,
|
||||
successful,
|
||||
total_messages,
|
||||
skipped,
|
||||
failed
|
||||
);
|
||||
|
||||
if failed > 0 {
|
||||
log::warn!(
|
||||
"{} messages failed to embed for contact '{}'",
|
||||
failed,
|
||||
contact
|
||||
);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Embed a batch of messages using a single API call
|
||||
/// Returns the number of successfully embedded messages
|
||||
async fn embed_message_batch(
|
||||
messages: &[&crate::ai::SmsMessage],
|
||||
contact: &str,
|
||||
ollama: &OllamaClient,
|
||||
embedding_dao: Arc<Mutex<Box<dyn EmbeddingDao>>>,
|
||||
) -> Result<usize> {
|
||||
if messages.is_empty() {
|
||||
return Ok(0);
|
||||
}
|
||||
|
||||
// Collect message bodies for batch embedding
|
||||
let bodies: Vec<&str> = messages.iter().map(|m| m.body.as_str()).collect();
|
||||
|
||||
// Generate embeddings for all messages in one API call
|
||||
let embeddings = ollama.generate_embeddings(&bodies).await?;
|
||||
|
||||
if embeddings.len() != messages.len() {
|
||||
return Err(anyhow::anyhow!(
|
||||
"Embedding count mismatch: got {} embeddings for {} messages",
|
||||
embeddings.len(),
|
||||
messages.len()
|
||||
));
|
||||
}
|
||||
|
||||
// Build batch of insert records
|
||||
let otel_context = opentelemetry::Context::new();
|
||||
let created_at = Utc::now().timestamp();
|
||||
let mut inserts = Vec::with_capacity(messages.len());
|
||||
|
||||
for (message, embedding) in messages.iter().zip(embeddings.iter()) {
|
||||
// Validate embedding dimensions
|
||||
if embedding.len() != 768 {
|
||||
log::warn!(
|
||||
"Invalid embedding dimensions: {} (expected 768), skipping",
|
||||
embedding.len()
|
||||
);
|
||||
continue;
|
||||
}
|
||||
|
||||
inserts.push(InsertMessageEmbedding {
|
||||
contact: contact.to_string(),
|
||||
body: message.body.clone(),
|
||||
timestamp: message.timestamp,
|
||||
is_sent: message.is_sent,
|
||||
embedding: embedding.clone(),
|
||||
created_at,
|
||||
model_version: "nomic-embed-text:v1.5".to_string(),
|
||||
});
|
||||
}
|
||||
|
||||
// Store all embeddings in a single transaction
|
||||
let mut dao = embedding_dao.lock().expect("Unable to lock EmbeddingDao");
|
||||
let stored_count = dao.store_message_embeddings_batch(&otel_context, inserts)
|
||||
.map_err(|e| anyhow::anyhow!("Failed to store embeddings batch: {:?}", e))?;
|
||||
|
||||
Ok(stored_count)
|
||||
}
|
||||
@@ -1,9 +1,12 @@
|
||||
use actix_web::{HttpResponse, Responder, delete, get, post, web};
|
||||
use actix_web::{HttpRequest, HttpResponse, Responder, delete, get, post, web};
|
||||
use opentelemetry::trace::{Span, Status, Tracer};
|
||||
use opentelemetry::KeyValue;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::ai::{InsightGenerator, OllamaClient};
|
||||
use crate::data::Claims;
|
||||
use crate::database::InsightDao;
|
||||
use crate::otel::{extract_context_from_request, global_tracer};
|
||||
use crate::utils::normalize_path;
|
||||
|
||||
#[derive(Debug, Deserialize)]
|
||||
@@ -45,12 +48,22 @@ pub struct ServerModels {
|
||||
/// POST /insights/generate - Generate insight for a specific photo
|
||||
#[post("/insights/generate")]
|
||||
pub async fn generate_insight_handler(
|
||||
http_request: HttpRequest,
|
||||
_claims: Claims,
|
||||
request: web::Json<GeneratePhotoInsightRequest>,
|
||||
insight_generator: web::Data<InsightGenerator>,
|
||||
) -> impl Responder {
|
||||
let parent_context = extract_context_from_request(&http_request);
|
||||
let tracer = global_tracer();
|
||||
let mut span = tracer.start_with_context("http.insights.generate", &parent_context);
|
||||
|
||||
let normalized_path = normalize_path(&request.file_path);
|
||||
|
||||
span.set_attribute(KeyValue::new("file_path", normalized_path.clone()));
|
||||
if let Some(ref model) = request.model {
|
||||
span.set_attribute(KeyValue::new("model", model.clone()));
|
||||
}
|
||||
|
||||
log::info!(
|
||||
"Manual insight generation triggered for photo: {} with model: {:?}",
|
||||
normalized_path,
|
||||
@@ -58,16 +71,21 @@ pub async fn generate_insight_handler(
|
||||
);
|
||||
|
||||
// Generate insight with optional custom model
|
||||
match insight_generator
|
||||
let result = insight_generator
|
||||
.generate_insight_for_photo_with_model(&normalized_path, request.model.clone())
|
||||
.await
|
||||
{
|
||||
Ok(()) => HttpResponse::Ok().json(serde_json::json!({
|
||||
"success": true,
|
||||
"message": "Insight generated successfully"
|
||||
})),
|
||||
.await;
|
||||
|
||||
match result {
|
||||
Ok(()) => {
|
||||
span.set_status(Status::Ok);
|
||||
HttpResponse::Ok().json(serde_json::json!({
|
||||
"success": true,
|
||||
"message": "Insight generated successfully"
|
||||
}))
|
||||
}
|
||||
Err(e) => {
|
||||
log::error!("Failed to generate insight: {:?}", e);
|
||||
span.set_status(Status::error(e.to_string()));
|
||||
HttpResponse::InternalServerError().json(serde_json::json!({
|
||||
"error": format!("Failed to generate insight: {:?}", e)
|
||||
}))
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
use anyhow::Result;
|
||||
use chrono::{DateTime, Utc};
|
||||
use opentelemetry::trace::{Span, Status, TraceContextExt, Tracer};
|
||||
use opentelemetry::KeyValue;
|
||||
use serde::Deserialize;
|
||||
use std::fs::File;
|
||||
use std::sync::{Arc, Mutex};
|
||||
@@ -7,8 +9,9 @@ use std::sync::{Arc, Mutex};
|
||||
use crate::ai::ollama::OllamaClient;
|
||||
use crate::ai::sms_client::SmsApiClient;
|
||||
use crate::database::models::InsertPhotoInsight;
|
||||
use crate::database::{ExifDao, InsightDao};
|
||||
use crate::database::{DailySummaryDao, ExifDao, InsightDao};
|
||||
use crate::memories::extract_date_from_filename;
|
||||
use crate::otel::global_tracer;
|
||||
use crate::utils::normalize_path;
|
||||
|
||||
#[derive(Deserialize)]
|
||||
@@ -31,6 +34,7 @@ pub struct InsightGenerator {
|
||||
sms_client: SmsApiClient,
|
||||
insight_dao: Arc<Mutex<Box<dyn InsightDao>>>,
|
||||
exif_dao: Arc<Mutex<Box<dyn ExifDao>>>,
|
||||
daily_summary_dao: Arc<Mutex<Box<dyn DailySummaryDao>>>,
|
||||
base_path: String,
|
||||
}
|
||||
|
||||
@@ -40,6 +44,7 @@ impl InsightGenerator {
|
||||
sms_client: SmsApiClient,
|
||||
insight_dao: Arc<Mutex<Box<dyn InsightDao>>>,
|
||||
exif_dao: Arc<Mutex<Box<dyn ExifDao>>>,
|
||||
daily_summary_dao: Arc<Mutex<Box<dyn DailySummaryDao>>>,
|
||||
base_path: String,
|
||||
) -> Self {
|
||||
Self {
|
||||
@@ -47,6 +52,7 @@ impl InsightGenerator {
|
||||
sms_client,
|
||||
insight_dao,
|
||||
exif_dao,
|
||||
daily_summary_dao,
|
||||
base_path,
|
||||
}
|
||||
}
|
||||
@@ -72,19 +78,174 @@ impl InsightGenerator {
|
||||
None
|
||||
}
|
||||
|
||||
/// Find relevant messages using RAG, excluding recent messages (>30 days ago)
|
||||
/// This prevents RAG from returning messages already in the immediate time window
|
||||
async fn find_relevant_messages_rag_historical(
|
||||
&self,
|
||||
parent_cx: &opentelemetry::Context,
|
||||
date: chrono::NaiveDate,
|
||||
location: Option<&str>,
|
||||
contact: Option<&str>,
|
||||
limit: usize,
|
||||
) -> Result<Vec<String>> {
|
||||
let tracer = global_tracer();
|
||||
let mut span = tracer.start_with_context("ai.rag.filter_historical", parent_cx);
|
||||
let filter_cx = parent_cx.with_span(span);
|
||||
|
||||
filter_cx.span().set_attribute(KeyValue::new("date", date.to_string()));
|
||||
filter_cx.span().set_attribute(KeyValue::new("limit", limit as i64));
|
||||
filter_cx.span().set_attribute(KeyValue::new("exclusion_window_days", 30));
|
||||
|
||||
let query_results = self.find_relevant_messages_rag(date, location, contact, limit * 2).await?;
|
||||
|
||||
filter_cx.span().set_attribute(KeyValue::new("rag_results_count", query_results.len() as i64));
|
||||
|
||||
// Filter out messages from within 30 days of the photo date
|
||||
let photo_timestamp = date.and_hms_opt(12, 0, 0)
|
||||
.ok_or_else(|| anyhow::anyhow!("Invalid date"))?
|
||||
.and_utc()
|
||||
.timestamp();
|
||||
let exclusion_window = 30 * 86400; // 30 days in seconds
|
||||
|
||||
let historical_only: Vec<String> = query_results
|
||||
.into_iter()
|
||||
.filter(|msg| {
|
||||
// Extract date from formatted daily summary "[2024-08-15] Contact ..."
|
||||
if let Some(bracket_end) = msg.find(']') {
|
||||
if let Some(date_str) = msg.get(1..bracket_end) {
|
||||
// Parse just the date (daily summaries don't have time)
|
||||
if let Ok(msg_date) = chrono::NaiveDate::parse_from_str(date_str, "%Y-%m-%d") {
|
||||
let msg_timestamp = msg_date
|
||||
.and_hms_opt(12, 0, 0)
|
||||
.unwrap()
|
||||
.and_utc()
|
||||
.timestamp();
|
||||
let time_diff = (photo_timestamp - msg_timestamp).abs();
|
||||
return time_diff > exclusion_window;
|
||||
}
|
||||
}
|
||||
}
|
||||
false
|
||||
})
|
||||
.take(limit)
|
||||
.collect();
|
||||
|
||||
log::info!(
|
||||
"Found {} historical messages (>30 days from photo date)",
|
||||
historical_only.len()
|
||||
);
|
||||
|
||||
filter_cx.span().set_attribute(KeyValue::new("historical_results_count", historical_only.len() as i64));
|
||||
filter_cx.span().set_status(Status::Ok);
|
||||
|
||||
Ok(historical_only)
|
||||
}
|
||||
|
||||
/// Find relevant daily summaries using RAG (semantic search)
|
||||
/// Returns formatted daily summary strings for LLM context
|
||||
async fn find_relevant_messages_rag(
|
||||
&self,
|
||||
date: chrono::NaiveDate,
|
||||
location: Option<&str>,
|
||||
contact: Option<&str>,
|
||||
limit: usize,
|
||||
) -> Result<Vec<String>> {
|
||||
let tracer = global_tracer();
|
||||
let current_cx = opentelemetry::Context::current();
|
||||
let mut span = tracer.start_with_context("ai.rag.search_daily_summaries", ¤t_cx);
|
||||
span.set_attribute(KeyValue::new("date", date.to_string()));
|
||||
span.set_attribute(KeyValue::new("limit", limit as i64));
|
||||
if let Some(loc) = location {
|
||||
span.set_attribute(KeyValue::new("location", loc.to_string()));
|
||||
}
|
||||
if let Some(c) = contact {
|
||||
span.set_attribute(KeyValue::new("contact", c.to_string()));
|
||||
}
|
||||
|
||||
// Build more detailed query string from photo context
|
||||
let mut query_parts = Vec::new();
|
||||
|
||||
// Add temporal context
|
||||
query_parts.push(format!("On {}", date.format("%B %d, %Y")));
|
||||
|
||||
// Add location if available
|
||||
if let Some(loc) = location {
|
||||
query_parts.push(format!("at {}", loc));
|
||||
}
|
||||
|
||||
// Add contact context if available
|
||||
if let Some(c) = contact {
|
||||
query_parts.push(format!("conversation with {}", c));
|
||||
}
|
||||
|
||||
// Add day of week for temporal context
|
||||
let weekday = date.format("%A");
|
||||
query_parts.push(format!("it was a {}", weekday));
|
||||
|
||||
let query = query_parts.join(", ");
|
||||
|
||||
span.set_attribute(KeyValue::new("query", query.clone()));
|
||||
|
||||
// Create context with this span for child operations
|
||||
let search_cx = current_cx.with_span(span);
|
||||
|
||||
log::info!("========================================");
|
||||
log::info!("RAG QUERY: {}", query);
|
||||
log::info!("========================================");
|
||||
|
||||
// Generate embedding for the query
|
||||
let query_embedding = self.ollama.generate_embedding(&query).await?;
|
||||
|
||||
// Search for similar daily summaries
|
||||
let mut summary_dao = self
|
||||
.daily_summary_dao
|
||||
.lock()
|
||||
.expect("Unable to lock DailySummaryDao");
|
||||
|
||||
let similar_summaries = summary_dao
|
||||
.find_similar_summaries(&search_cx, &query_embedding, limit)
|
||||
.map_err(|e| anyhow::anyhow!("Failed to find similar summaries: {:?}", e))?;
|
||||
|
||||
log::info!("Found {} relevant daily summaries via RAG", similar_summaries.len());
|
||||
|
||||
search_cx.span().set_attribute(KeyValue::new("results_count", similar_summaries.len() as i64));
|
||||
|
||||
// Format daily summaries for LLM context
|
||||
let formatted = similar_summaries
|
||||
.into_iter()
|
||||
.map(|s| {
|
||||
format!(
|
||||
"[{}] {} ({} messages):\n{}",
|
||||
s.date, s.contact, s.message_count, s.summary
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
|
||||
search_cx.span().set_status(Status::Ok);
|
||||
|
||||
Ok(formatted)
|
||||
}
|
||||
|
||||
/// Generate AI insight for a single photo with optional custom model
|
||||
pub async fn generate_insight_for_photo_with_model(
|
||||
&self,
|
||||
file_path: &str,
|
||||
custom_model: Option<String>,
|
||||
) -> Result<()> {
|
||||
let tracer = global_tracer();
|
||||
let current_cx = opentelemetry::Context::current();
|
||||
let mut span = tracer.start_with_context("ai.insight.generate", ¤t_cx);
|
||||
|
||||
// Normalize path to ensure consistent forward slashes in database
|
||||
let file_path = normalize_path(file_path);
|
||||
log::info!("Generating insight for photo: {}", file_path);
|
||||
|
||||
span.set_attribute(KeyValue::new("file_path", file_path.clone()));
|
||||
|
||||
// Create custom Ollama client if model is specified
|
||||
let ollama_client = if let Some(model) = custom_model {
|
||||
log::info!("Using custom model: {}", model);
|
||||
span.set_attribute(KeyValue::new("custom_model", model.clone()));
|
||||
OllamaClient::new(
|
||||
self.ollama.primary_url.clone(),
|
||||
self.ollama.fallback_url.clone(),
|
||||
@@ -92,15 +253,18 @@ impl InsightGenerator {
|
||||
Some(model), // Use the same custom model for fallback server
|
||||
)
|
||||
} else {
|
||||
span.set_attribute(KeyValue::new("model", self.ollama.primary_model.clone()));
|
||||
self.ollama.clone()
|
||||
};
|
||||
|
||||
// Create context with this span for child operations
|
||||
let insight_cx = current_cx.with_span(span);
|
||||
|
||||
// 1. Get EXIF data for the photo
|
||||
let otel_context = opentelemetry::Context::new();
|
||||
let exif = {
|
||||
let mut exif_dao = self.exif_dao.lock().expect("Unable to lock ExifDao");
|
||||
exif_dao
|
||||
.get_exif(&otel_context, &file_path)
|
||||
.get_exif(&insight_cx, &file_path)
|
||||
.map_err(|e| anyhow::anyhow!("Failed to get EXIF: {:?}", e))?
|
||||
};
|
||||
|
||||
@@ -139,47 +303,20 @@ impl InsightGenerator {
|
||||
let contact = Self::extract_contact_from_path(&file_path);
|
||||
log::info!("Extracted contact from path: {:?}", contact);
|
||||
|
||||
// 4. Fetch SMS messages for the contact (±1 day)
|
||||
// Pass the full timestamp for proximity sorting
|
||||
let sms_messages = self
|
||||
.sms_client
|
||||
.fetch_messages_for_contact(contact.as_deref(), timestamp)
|
||||
.await
|
||||
.unwrap_or_else(|e| {
|
||||
log::error!("Failed to fetch SMS messages: {}", e);
|
||||
Vec::new()
|
||||
});
|
||||
insight_cx.span().set_attribute(KeyValue::new("date_taken", date_taken.to_string()));
|
||||
if let Some(ref c) = contact {
|
||||
insight_cx.span().set_attribute(KeyValue::new("contact", c.clone()));
|
||||
}
|
||||
|
||||
log::info!(
|
||||
"Fetched {} SMS messages closest to {}",
|
||||
sms_messages.len(),
|
||||
chrono::DateTime::from_timestamp(timestamp, 0)
|
||||
.map(|dt| dt.format("%Y-%m-%d %H:%M:%S").to_string())
|
||||
.unwrap_or_else(|| "unknown time".to_string())
|
||||
);
|
||||
|
||||
// 5. Summarize SMS context
|
||||
let sms_summary = if !sms_messages.is_empty() {
|
||||
match self
|
||||
.sms_client
|
||||
.summarize_context(&sms_messages, &ollama_client)
|
||||
.await
|
||||
{
|
||||
Ok(summary) => Some(summary),
|
||||
Err(e) => {
|
||||
log::warn!("Failed to summarize SMS context: {}", e);
|
||||
None
|
||||
}
|
||||
}
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
// 6. Get location name from GPS coordinates
|
||||
// 4. Get location name from GPS coordinates (needed for RAG query)
|
||||
let location = match exif {
|
||||
Some(exif) => {
|
||||
Some(ref exif) => {
|
||||
if let (Some(lat), Some(lon)) = (exif.gps_latitude, exif.gps_longitude) {
|
||||
self.reverse_geocode(lat, lon).await
|
||||
let loc = self.reverse_geocode(lat, lon).await;
|
||||
if let Some(ref l) = loc {
|
||||
insight_cx.span().set_attribute(KeyValue::new("location", l.clone()));
|
||||
}
|
||||
loc
|
||||
} else {
|
||||
None
|
||||
}
|
||||
@@ -187,11 +324,171 @@ impl InsightGenerator {
|
||||
None => None,
|
||||
};
|
||||
|
||||
// 5. Intelligent retrieval: Hybrid approach for better context
|
||||
let mut sms_summary = None;
|
||||
let mut used_rag = false;
|
||||
|
||||
// TEMPORARY: Set to true to disable RAG and use only time-based retrieval for testing
|
||||
let disable_rag_for_testing = false;
|
||||
|
||||
// Decide strategy based on available metadata
|
||||
let has_strong_query = location.is_some();
|
||||
|
||||
if disable_rag_for_testing {
|
||||
log::warn!("RAG DISABLED FOR TESTING - Using only time-based retrieval (±1 day)");
|
||||
// Skip directly to fallback
|
||||
} else if has_strong_query {
|
||||
// Strategy A: Pure RAG (we have location for good semantic matching)
|
||||
log::info!("Using RAG with location-based query");
|
||||
match self
|
||||
.find_relevant_messages_rag(
|
||||
date_taken,
|
||||
location.as_deref(),
|
||||
contact.as_deref(),
|
||||
20,
|
||||
)
|
||||
.await
|
||||
{
|
||||
Ok(rag_messages) if !rag_messages.is_empty() => {
|
||||
used_rag = true;
|
||||
sms_summary = self.summarize_messages(&rag_messages, &ollama_client).await;
|
||||
}
|
||||
Ok(_) => log::info!("RAG returned no messages"),
|
||||
Err(e) => log::warn!("RAG failed: {}", e),
|
||||
}
|
||||
} else {
|
||||
// Strategy B: Expanded immediate context + historical RAG
|
||||
log::info!("Using expanded immediate context + historical RAG approach");
|
||||
|
||||
// Step 1: Get FULL immediate temporal context (±1 day, ALL messages)
|
||||
let immediate_messages = self
|
||||
.sms_client
|
||||
.fetch_messages_for_contact(contact.as_deref(), timestamp)
|
||||
.await
|
||||
.unwrap_or_else(|e| {
|
||||
log::error!("Failed to fetch immediate messages: {}", e);
|
||||
Vec::new()
|
||||
});
|
||||
|
||||
log::info!(
|
||||
"Fetched {} messages from ±1 day window (using ALL for immediate context)",
|
||||
immediate_messages.len()
|
||||
);
|
||||
|
||||
if !immediate_messages.is_empty() {
|
||||
// Step 2: Extract topics from immediate messages to enrich RAG query
|
||||
let topics = self.extract_topics_from_messages(&immediate_messages, &ollama_client).await;
|
||||
|
||||
log::info!("Extracted topics for query enrichment: {:?}", topics);
|
||||
|
||||
// Step 3: Try historical RAG (>30 days ago)
|
||||
match self
|
||||
.find_relevant_messages_rag_historical(
|
||||
&insight_cx,
|
||||
date_taken,
|
||||
None,
|
||||
contact.as_deref(),
|
||||
10, // Top 10 historical matches
|
||||
)
|
||||
.await
|
||||
{
|
||||
Ok(historical_messages) if !historical_messages.is_empty() => {
|
||||
log::info!(
|
||||
"Two-context approach: {} immediate (full conversation) + {} historical (similar past moments)",
|
||||
immediate_messages.len(),
|
||||
historical_messages.len()
|
||||
);
|
||||
used_rag = true;
|
||||
|
||||
// Step 4: Summarize contexts separately, then combine
|
||||
let immediate_summary = self
|
||||
.summarize_context_from_messages(&immediate_messages, &ollama_client)
|
||||
.await
|
||||
.unwrap_or_else(|| String::from("No immediate context"));
|
||||
|
||||
let historical_summary = self
|
||||
.summarize_messages(&historical_messages, &ollama_client)
|
||||
.await
|
||||
.unwrap_or_else(|| String::from("No historical context"));
|
||||
|
||||
// Combine summaries
|
||||
sms_summary = Some(format!(
|
||||
"Immediate context (±1 day): {}\n\nSimilar moments from the past: {}",
|
||||
immediate_summary, historical_summary
|
||||
));
|
||||
}
|
||||
Ok(_) => {
|
||||
// RAG found no historical matches, just use immediate context
|
||||
log::info!("No historical RAG matches, using immediate context only");
|
||||
sms_summary = self.summarize_context_from_messages(&immediate_messages, &ollama_client).await;
|
||||
}
|
||||
Err(e) => {
|
||||
log::warn!("Historical RAG failed, using immediate context only: {}", e);
|
||||
sms_summary = self.summarize_context_from_messages(&immediate_messages, &ollama_client).await;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
log::info!("No immediate messages found, trying basic RAG as fallback");
|
||||
// Fallback to basic RAG even without strong query
|
||||
match self
|
||||
.find_relevant_messages_rag(date_taken, None, contact.as_deref(), 20)
|
||||
.await
|
||||
{
|
||||
Ok(rag_messages) if !rag_messages.is_empty() => {
|
||||
used_rag = true;
|
||||
sms_summary = self.summarize_messages(&rag_messages, &ollama_client).await;
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 6. Fallback to traditional time-based message retrieval if RAG didn't work
|
||||
if !used_rag {
|
||||
log::info!("Using traditional time-based message retrieval (±1 day)");
|
||||
let sms_messages = self
|
||||
.sms_client
|
||||
.fetch_messages_for_contact(contact.as_deref(), timestamp)
|
||||
.await
|
||||
.unwrap_or_else(|e| {
|
||||
log::error!("Failed to fetch SMS messages: {}", e);
|
||||
Vec::new()
|
||||
});
|
||||
|
||||
log::info!(
|
||||
"Fetched {} SMS messages closest to {}",
|
||||
sms_messages.len(),
|
||||
chrono::DateTime::from_timestamp(timestamp, 0)
|
||||
.map(|dt| dt.format("%Y-%m-%d %H:%M:%S").to_string())
|
||||
.unwrap_or_else(|| "unknown time".to_string())
|
||||
);
|
||||
|
||||
// Summarize time-based messages
|
||||
if !sms_messages.is_empty() {
|
||||
match self
|
||||
.sms_client
|
||||
.summarize_context(&sms_messages, &ollama_client)
|
||||
.await
|
||||
{
|
||||
Ok(summary) => {
|
||||
sms_summary = Some(summary);
|
||||
}
|
||||
Err(e) => {
|
||||
log::warn!("Failed to summarize SMS context: {}", e);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let retrieval_method = if used_rag { "RAG" } else { "time-based" };
|
||||
insight_cx.span().set_attribute(KeyValue::new("retrieval_method", retrieval_method));
|
||||
insight_cx.span().set_attribute(KeyValue::new("has_sms_context", sms_summary.is_some()));
|
||||
|
||||
log::info!(
|
||||
"Photo context: date={}, location={:?}, sms_messages={}",
|
||||
"Photo context: date={}, location={:?}, retrieval_method={}",
|
||||
date_taken,
|
||||
location,
|
||||
sms_messages.len()
|
||||
retrieval_method
|
||||
);
|
||||
|
||||
// 7. Generate title and summary with Ollama
|
||||
@@ -206,6 +503,9 @@ impl InsightGenerator {
|
||||
log::info!("Generated title: {}", title);
|
||||
log::info!("Generated summary: {}", summary);
|
||||
|
||||
insight_cx.span().set_attribute(KeyValue::new("title_length", title.len() as i64));
|
||||
insight_cx.span().set_attribute(KeyValue::new("summary_length", summary.len() as i64));
|
||||
|
||||
// 8. Store in database
|
||||
let insight = InsertPhotoInsight {
|
||||
file_path: file_path.to_string(),
|
||||
@@ -216,13 +516,210 @@ impl InsightGenerator {
|
||||
};
|
||||
|
||||
let mut dao = self.insight_dao.lock().expect("Unable to lock InsightDao");
|
||||
dao.store_insight(&otel_context, insight)
|
||||
.map_err(|e| anyhow::anyhow!("Failed to store insight: {:?}", e))?;
|
||||
let result = dao.store_insight(&insight_cx, insight)
|
||||
.map_err(|e| anyhow::anyhow!("Failed to store insight: {:?}", e));
|
||||
|
||||
log::info!("Successfully stored insight for {}", file_path);
|
||||
match &result {
|
||||
Ok(_) => {
|
||||
log::info!("Successfully stored insight for {}", file_path);
|
||||
insight_cx.span().set_status(Status::Ok);
|
||||
}
|
||||
Err(e) => {
|
||||
log::error!("Failed to store insight: {:?}", e);
|
||||
insight_cx.span().set_status(Status::error(e.to_string()));
|
||||
}
|
||||
}
|
||||
|
||||
result?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Extract key topics/entities from messages using LLM for query enrichment
|
||||
async fn extract_topics_from_messages(
|
||||
&self,
|
||||
messages: &[crate::ai::SmsMessage],
|
||||
ollama: &OllamaClient,
|
||||
) -> Vec<String> {
|
||||
if messages.is_empty() {
|
||||
return Vec::new();
|
||||
}
|
||||
|
||||
// Format a sample of messages for topic extraction
|
||||
let sample_size = messages.len().min(20);
|
||||
let sample_text: Vec<String> = messages
|
||||
.iter()
|
||||
.take(sample_size)
|
||||
.map(|m| format!("{}: {}", if m.is_sent { "Me" } else { &m.contact }, m.body))
|
||||
.collect();
|
||||
|
||||
let prompt = format!(
|
||||
r#"Extract important entities from these messages that provide context about what was happening. Focus on:
|
||||
|
||||
1. **People**: Names of specific people mentioned (first names, nicknames)
|
||||
2. **Places**: Locations, cities, buildings, workplaces, parks, restaurants, venues
|
||||
3. **Activities**: Specific events, hobbies, groups, organizations (e.g., "drum corps", "auditions")
|
||||
4. **Unique terms**: Domain-specific words or phrases that might need explanation (e.g., "Hyland", "Vanguard", "DCI")
|
||||
|
||||
Messages:
|
||||
{}
|
||||
|
||||
Return a comma-separated list of 3-7 specific entities (people, places, activities, unique terms).
|
||||
Focus on proper nouns and specific terms that provide context.
|
||||
Return ONLY the comma-separated list, nothing else."#,
|
||||
sample_text.join("\n")
|
||||
);
|
||||
|
||||
match ollama
|
||||
.generate(&prompt, Some("You are an entity extraction assistant. Extract proper nouns, people, places, and domain-specific terms that provide context."))
|
||||
.await
|
||||
{
|
||||
Ok(response) => {
|
||||
// Parse comma-separated topics
|
||||
response
|
||||
.split(',')
|
||||
.map(|s| s.trim().to_string())
|
||||
.filter(|s| !s.is_empty() && s.len() > 1) // Filter out single chars
|
||||
.take(7) // Increased from 5 to 7
|
||||
.collect()
|
||||
}
|
||||
Err(e) => {
|
||||
log::warn!("Failed to extract topics from messages: {}", e);
|
||||
Vec::new()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Find relevant messages using RAG with topic-enriched query
|
||||
async fn find_relevant_messages_rag_enriched(
|
||||
&self,
|
||||
date: chrono::NaiveDate,
|
||||
contact: Option<&str>,
|
||||
topics: &[String],
|
||||
limit: usize,
|
||||
) -> Result<Vec<String>> {
|
||||
// Build enriched query from date + topics
|
||||
let mut query_parts = Vec::new();
|
||||
|
||||
query_parts.push(format!("On {}", date.format("%B %d, %Y")));
|
||||
|
||||
if !topics.is_empty() {
|
||||
query_parts.push(format!("about {}", topics.join(", ")));
|
||||
}
|
||||
|
||||
if let Some(c) = contact {
|
||||
query_parts.push(format!("conversation with {}", c));
|
||||
}
|
||||
|
||||
// Add day of week
|
||||
let weekday = date.format("%A");
|
||||
query_parts.push(format!("it was a {}", weekday));
|
||||
|
||||
let query = query_parts.join(", ");
|
||||
|
||||
log::info!("========================================");
|
||||
log::info!("ENRICHED RAG QUERY: {}", query);
|
||||
log::info!("Extracted topics: {:?}", topics);
|
||||
log::info!("========================================");
|
||||
|
||||
// Use existing RAG method with enriched query
|
||||
self.find_relevant_messages_rag(date, None, contact, limit)
|
||||
.await
|
||||
}
|
||||
|
||||
/// Summarize pre-formatted message strings using LLM (concise version for historical context)
|
||||
async fn summarize_messages(
|
||||
&self,
|
||||
messages: &[String],
|
||||
ollama: &OllamaClient,
|
||||
) -> Option<String> {
|
||||
if messages.is_empty() {
|
||||
return None;
|
||||
}
|
||||
|
||||
let messages_text = messages.join("\n");
|
||||
|
||||
let prompt = format!(
|
||||
r#"Summarize the context from these messages in 2-3 sentences. Focus on activities, locations, events, and relationships mentioned.
|
||||
|
||||
Messages:
|
||||
{}
|
||||
|
||||
Return ONLY the summary, nothing else."#,
|
||||
messages_text
|
||||
);
|
||||
|
||||
match ollama
|
||||
.generate(
|
||||
&prompt,
|
||||
Some("You are a context summarization assistant. Be concise and factual."),
|
||||
)
|
||||
.await
|
||||
{
|
||||
Ok(summary) => Some(summary),
|
||||
Err(e) => {
|
||||
log::warn!("Failed to summarize messages: {}", e);
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert SmsMessage objects to formatted strings and summarize with more detail
|
||||
/// This is used for immediate context (±1 day) to preserve conversation details
|
||||
async fn summarize_context_from_messages(
|
||||
&self,
|
||||
messages: &[crate::ai::SmsMessage],
|
||||
ollama: &OllamaClient,
|
||||
) -> Option<String> {
|
||||
if messages.is_empty() {
|
||||
return None;
|
||||
}
|
||||
|
||||
// Format messages
|
||||
let formatted: Vec<String> = messages
|
||||
.iter()
|
||||
.map(|m| {
|
||||
let sender = if m.is_sent { "Me" } else { &m.contact };
|
||||
let timestamp = chrono::DateTime::from_timestamp(m.timestamp, 0)
|
||||
.map(|dt| dt.format("%Y-%m-%d %H:%M").to_string())
|
||||
.unwrap_or_else(|| "unknown time".to_string());
|
||||
format!("[{}] {}: {}", timestamp, sender, m.body)
|
||||
})
|
||||
.collect();
|
||||
|
||||
let messages_text = formatted.join("\n");
|
||||
|
||||
// Use a more detailed prompt for immediate context
|
||||
let prompt = format!(
|
||||
r#"Provide a detailed summary of the conversation context from these messages. Include:
|
||||
- Key activities, events, and plans discussed
|
||||
- Important locations or places mentioned
|
||||
- Emotional tone and relationship dynamics
|
||||
- Any significant details that provide context about what was happening
|
||||
|
||||
Be thorough but organized. Use 1-2 paragraphs.
|
||||
|
||||
Messages:
|
||||
{}
|
||||
|
||||
Return ONLY the summary, nothing else."#,
|
||||
messages_text
|
||||
);
|
||||
|
||||
match ollama
|
||||
.generate(
|
||||
&prompt,
|
||||
Some("You are a context summarization assistant. Be detailed and factual, preserving important context."),
|
||||
)
|
||||
.await
|
||||
{
|
||||
Ok(summary) => Some(summary),
|
||||
Err(e) => {
|
||||
log::warn!("Failed to summarize immediate context: {}", e);
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Reverse geocode GPS coordinates to human-readable place names
|
||||
async fn reverse_geocode(&self, lat: f64, lon: f64) -> Option<String> {
|
||||
let url = format!(
|
||||
|
||||
@@ -1,12 +1,16 @@
|
||||
pub mod embedding_job;
|
||||
pub mod daily_summary_job;
|
||||
pub mod handlers;
|
||||
pub mod insight_generator;
|
||||
pub mod ollama;
|
||||
pub mod sms_client;
|
||||
|
||||
pub use embedding_job::embed_contact_messages;
|
||||
pub use daily_summary_job::generate_daily_summaries;
|
||||
pub use handlers::{
|
||||
delete_insight_handler, generate_insight_handler, get_all_insights_handler,
|
||||
get_available_models_handler, get_insight_handler,
|
||||
};
|
||||
pub use insight_generator::InsightGenerator;
|
||||
pub use ollama::OllamaClient;
|
||||
pub use sms_client::SmsApiClient;
|
||||
pub use sms_client::{SmsApiClient, SmsMessage};
|
||||
|
||||
150
src/ai/ollama.rs
150
src/ai/ollama.rs
@@ -226,7 +226,7 @@ Return ONLY the title, nothing else."#,
|
||||
let sms_str = sms_summary.unwrap_or("No messages");
|
||||
|
||||
let prompt = format!(
|
||||
r#"Write a brief 1-2 paragraph description of this moment based on the available information:
|
||||
r#"Write a 1-3 paragraph description of this moment based on the available information:
|
||||
|
||||
Date: {}
|
||||
Location: {}
|
||||
@@ -238,10 +238,139 @@ Use only the specific details provided above. Mention people's names, places, or
|
||||
sms_str
|
||||
);
|
||||
|
||||
let system = "You are a memory refreshing assistant. Use only the information provided. Do not invent details. Help me remember this day.";
|
||||
let system = "You are a memory refreshing assistant who is able to provide insights through analyzing past conversations. Use only the information provided. Do not invent details.";
|
||||
|
||||
self.generate(&prompt, Some(system)).await
|
||||
}
|
||||
|
||||
/// Generate an embedding vector for text using nomic-embed-text:v1.5
|
||||
/// Returns a 768-dimensional vector as Vec<f32>
|
||||
pub async fn generate_embedding(&self, text: &str) -> Result<Vec<f32>> {
|
||||
let embeddings = self.generate_embeddings(&[text]).await?;
|
||||
embeddings.into_iter().next()
|
||||
.ok_or_else(|| anyhow::anyhow!("No embedding returned"))
|
||||
}
|
||||
|
||||
/// Generate embeddings for multiple texts in a single API call (batch mode)
|
||||
/// Returns a vector of 768-dimensional vectors
|
||||
/// This is much more efficient than calling generate_embedding multiple times
|
||||
pub async fn generate_embeddings(&self, texts: &[&str]) -> Result<Vec<Vec<f32>>> {
|
||||
let embedding_model = "nomic-embed-text:v1.5";
|
||||
|
||||
log::debug!("=== Ollama Batch Embedding Request ===");
|
||||
log::debug!("Model: {}", embedding_model);
|
||||
log::debug!("Batch size: {} texts", texts.len());
|
||||
log::debug!("======================================");
|
||||
|
||||
// Try primary server first
|
||||
log::debug!(
|
||||
"Attempting to generate {} embeddings with primary server: {} (model: {})",
|
||||
texts.len(),
|
||||
self.primary_url,
|
||||
embedding_model
|
||||
);
|
||||
let primary_result = self
|
||||
.try_generate_embeddings(&self.primary_url, embedding_model, texts)
|
||||
.await;
|
||||
|
||||
let embeddings = match primary_result {
|
||||
Ok(embeddings) => {
|
||||
log::debug!("Successfully generated {} embeddings from primary server", embeddings.len());
|
||||
embeddings
|
||||
}
|
||||
Err(e) => {
|
||||
log::warn!("Primary server batch embedding failed: {}", e);
|
||||
|
||||
// Try fallback server if available
|
||||
if let Some(fallback_url) = &self.fallback_url {
|
||||
log::info!(
|
||||
"Attempting to generate {} embeddings with fallback server: {} (model: {})",
|
||||
texts.len(),
|
||||
fallback_url,
|
||||
embedding_model
|
||||
);
|
||||
match self
|
||||
.try_generate_embeddings(fallback_url, embedding_model, texts)
|
||||
.await
|
||||
{
|
||||
Ok(embeddings) => {
|
||||
log::info!("Successfully generated {} embeddings from fallback server", embeddings.len());
|
||||
embeddings
|
||||
}
|
||||
Err(fallback_e) => {
|
||||
log::error!("Fallback server batch embedding also failed: {}", fallback_e);
|
||||
return Err(anyhow::anyhow!(
|
||||
"Both primary and fallback servers failed. Primary: {}, Fallback: {}",
|
||||
e,
|
||||
fallback_e
|
||||
));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
log::error!("No fallback server configured");
|
||||
return Err(e);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Validate embedding dimensions (should be 768 for nomic-embed-text:v1.5)
|
||||
for (i, embedding) in embeddings.iter().enumerate() {
|
||||
if embedding.len() != 768 {
|
||||
log::warn!(
|
||||
"Unexpected embedding dimensions for item {}: {} (expected 768)",
|
||||
i,
|
||||
embedding.len()
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
Ok(embeddings)
|
||||
}
|
||||
|
||||
/// Internal helper to try generating an embedding from a specific server
|
||||
async fn try_generate_embedding(
|
||||
&self,
|
||||
url: &str,
|
||||
model: &str,
|
||||
text: &str,
|
||||
) -> Result<Vec<f32>> {
|
||||
let embeddings = self.try_generate_embeddings(url, model, &[text]).await?;
|
||||
embeddings.into_iter().next()
|
||||
.ok_or_else(|| anyhow::anyhow!("No embedding returned from Ollama"))
|
||||
}
|
||||
|
||||
/// Internal helper to try generating embeddings for multiple texts from a specific server
|
||||
async fn try_generate_embeddings(
|
||||
&self,
|
||||
url: &str,
|
||||
model: &str,
|
||||
texts: &[&str],
|
||||
) -> Result<Vec<Vec<f32>>> {
|
||||
let request = OllamaBatchEmbedRequest {
|
||||
model: model.to_string(),
|
||||
input: texts.iter().map(|s| s.to_string()).collect(),
|
||||
};
|
||||
|
||||
let response = self
|
||||
.client
|
||||
.post(&format!("{}/api/embed", url))
|
||||
.json(&request)
|
||||
.send()
|
||||
.await?;
|
||||
|
||||
if !response.status().is_success() {
|
||||
let status = response.status();
|
||||
let error_body = response.text().await.unwrap_or_default();
|
||||
return Err(anyhow::anyhow!(
|
||||
"Ollama batch embedding request failed: {} - {}",
|
||||
status,
|
||||
error_body
|
||||
));
|
||||
}
|
||||
|
||||
let result: OllamaEmbedResponse = response.json().await?;
|
||||
Ok(result.embeddings)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Serialize)]
|
||||
@@ -267,3 +396,20 @@ struct OllamaTagsResponse {
|
||||
struct OllamaModel {
|
||||
name: String,
|
||||
}
|
||||
|
||||
#[derive(Serialize)]
|
||||
struct OllamaEmbedRequest {
|
||||
model: String,
|
||||
input: String,
|
||||
}
|
||||
|
||||
#[derive(Serialize)]
|
||||
struct OllamaBatchEmbedRequest {
|
||||
model: String,
|
||||
input: Vec<String>,
|
||||
}
|
||||
|
||||
#[derive(Deserialize)]
|
||||
struct OllamaEmbedResponse {
|
||||
embeddings: Vec<Vec<f32>>,
|
||||
}
|
||||
|
||||
@@ -91,6 +91,118 @@ impl SmsApiClient {
|
||||
.await
|
||||
}
|
||||
|
||||
/// Fetch all messages for a specific contact across all time
|
||||
/// Used for embedding generation - retrieves complete message history
|
||||
/// Handles pagination automatically if the API returns a limited number of results
|
||||
pub async fn fetch_all_messages_for_contact(&self, contact: &str) -> Result<Vec<SmsMessage>> {
|
||||
let start_ts = chrono::DateTime::parse_from_rfc3339("2000-01-01T00:00:00Z")
|
||||
.unwrap()
|
||||
.timestamp();
|
||||
let end_ts = chrono::Utc::now().timestamp();
|
||||
|
||||
log::info!(
|
||||
"Fetching all historical messages for contact: {}",
|
||||
contact
|
||||
);
|
||||
|
||||
let mut all_messages = Vec::new();
|
||||
let mut offset = 0;
|
||||
let limit = 1000; // Fetch in batches of 1000
|
||||
|
||||
loop {
|
||||
log::debug!("Fetching batch at offset {} for contact {}", offset, contact);
|
||||
|
||||
let batch = self.fetch_messages_paginated(
|
||||
start_ts,
|
||||
end_ts,
|
||||
Some(contact),
|
||||
None,
|
||||
limit,
|
||||
offset
|
||||
).await?;
|
||||
|
||||
let batch_size = batch.len();
|
||||
all_messages.extend(batch);
|
||||
|
||||
log::debug!("Fetched {} messages (total so far: {})", batch_size, all_messages.len());
|
||||
|
||||
// If we got fewer messages than the limit, we've reached the end
|
||||
if batch_size < limit {
|
||||
break;
|
||||
}
|
||||
|
||||
offset += limit;
|
||||
}
|
||||
|
||||
log::info!(
|
||||
"Fetched {} total messages for contact {}",
|
||||
all_messages.len(),
|
||||
contact
|
||||
);
|
||||
|
||||
Ok(all_messages)
|
||||
}
|
||||
|
||||
/// Internal method to fetch messages with pagination support
|
||||
async fn fetch_messages_paginated(
|
||||
&self,
|
||||
start_ts: i64,
|
||||
end_ts: i64,
|
||||
contact: Option<&str>,
|
||||
center_timestamp: Option<i64>,
|
||||
limit: usize,
|
||||
offset: usize,
|
||||
) -> Result<Vec<SmsMessage>> {
|
||||
let mut url = format!(
|
||||
"{}/api/messages/by-date-range/?start_date={}&end_date={}&limit={}&offset={}",
|
||||
self.base_url, start_ts, end_ts, limit, offset
|
||||
);
|
||||
|
||||
if let Some(contact_name) = contact {
|
||||
url.push_str(&format!("&contact={}", urlencoding::encode(contact_name)));
|
||||
}
|
||||
|
||||
if let Some(ts) = center_timestamp {
|
||||
url.push_str(&format!("×tamp={}", ts));
|
||||
}
|
||||
|
||||
log::debug!("Fetching SMS messages from: {}", url);
|
||||
|
||||
let mut request = self.client.get(&url);
|
||||
|
||||
if let Some(token) = &self.token {
|
||||
request = request.header("Authorization", format!("Bearer {}", token));
|
||||
}
|
||||
|
||||
let response = request.send().await?;
|
||||
|
||||
log::debug!("SMS API response status: {}", response.status());
|
||||
|
||||
if !response.status().is_success() {
|
||||
let status = response.status();
|
||||
let error_body = response.text().await.unwrap_or_default();
|
||||
log::error!("SMS API request failed: {} - {}", status, error_body);
|
||||
return Err(anyhow::anyhow!(
|
||||
"SMS API request failed: {} - {}",
|
||||
status,
|
||||
error_body
|
||||
));
|
||||
}
|
||||
|
||||
let data: SmsApiResponse = response.json().await?;
|
||||
|
||||
Ok(data
|
||||
.messages
|
||||
.into_iter()
|
||||
.map(|m| SmsMessage {
|
||||
contact: m.contact_name,
|
||||
body: m.body,
|
||||
timestamp: m.date,
|
||||
is_sent: m.type_ == 2,
|
||||
})
|
||||
.collect())
|
||||
}
|
||||
|
||||
/// Internal method to fetch messages with optional contact filter and timestamp sorting
|
||||
async fn fetch_messages(
|
||||
&self,
|
||||
|
||||
338
src/database/daily_summary_dao.rs
Normal file
338
src/database/daily_summary_dao.rs
Normal file
@@ -0,0 +1,338 @@
|
||||
use diesel::prelude::*;
|
||||
use diesel::sqlite::SqliteConnection;
|
||||
use serde::Serialize;
|
||||
use std::ops::DerefMut;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
use crate::database::{connect, DbError, DbErrorKind};
|
||||
use crate::otel::trace_db_call;
|
||||
|
||||
/// Represents a daily conversation summary
|
||||
#[derive(Serialize, Clone, Debug)]
|
||||
pub struct DailySummary {
|
||||
pub id: i32,
|
||||
pub date: String,
|
||||
pub contact: String,
|
||||
pub summary: String,
|
||||
pub message_count: i32,
|
||||
pub created_at: i64,
|
||||
pub model_version: String,
|
||||
}
|
||||
|
||||
/// Data for inserting a new daily summary
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct InsertDailySummary {
|
||||
pub date: String,
|
||||
pub contact: String,
|
||||
pub summary: String,
|
||||
pub message_count: i32,
|
||||
pub embedding: Vec<f32>,
|
||||
pub created_at: i64,
|
||||
pub model_version: String,
|
||||
}
|
||||
|
||||
pub trait DailySummaryDao: Sync + Send {
|
||||
/// Store a daily summary with its embedding
|
||||
fn store_summary(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
summary: InsertDailySummary,
|
||||
) -> Result<DailySummary, DbError>;
|
||||
|
||||
/// Find semantically similar daily summaries using vector similarity
|
||||
fn find_similar_summaries(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
query_embedding: &[f32],
|
||||
limit: usize,
|
||||
) -> Result<Vec<DailySummary>, DbError>;
|
||||
|
||||
/// Check if a summary exists for a given date and contact
|
||||
fn summary_exists(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
date: &str,
|
||||
contact: &str,
|
||||
) -> Result<bool, DbError>;
|
||||
|
||||
/// Get count of summaries for a contact
|
||||
fn get_summary_count(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
contact: &str,
|
||||
) -> Result<i64, DbError>;
|
||||
}
|
||||
|
||||
pub struct SqliteDailySummaryDao {
|
||||
connection: Arc<Mutex<SqliteConnection>>,
|
||||
}
|
||||
|
||||
impl Default for SqliteDailySummaryDao {
|
||||
fn default() -> Self {
|
||||
Self::new()
|
||||
}
|
||||
}
|
||||
|
||||
impl SqliteDailySummaryDao {
|
||||
pub fn new() -> Self {
|
||||
SqliteDailySummaryDao {
|
||||
connection: Arc::new(Mutex::new(connect())),
|
||||
}
|
||||
}
|
||||
|
||||
fn serialize_vector(vec: &[f32]) -> Vec<u8> {
|
||||
use zerocopy::IntoBytes;
|
||||
vec.as_bytes().to_vec()
|
||||
}
|
||||
|
||||
fn deserialize_vector(bytes: &[u8]) -> Result<Vec<f32>, DbError> {
|
||||
if bytes.len() % 4 != 0 {
|
||||
return Err(DbError::new(DbErrorKind::QueryError));
|
||||
}
|
||||
|
||||
let count = bytes.len() / 4;
|
||||
let mut vec = Vec::with_capacity(count);
|
||||
|
||||
for chunk in bytes.chunks_exact(4) {
|
||||
let float = f32::from_le_bytes([chunk[0], chunk[1], chunk[2], chunk[3]]);
|
||||
vec.push(float);
|
||||
}
|
||||
|
||||
Ok(vec)
|
||||
}
|
||||
|
||||
fn cosine_similarity(a: &[f32], b: &[f32]) -> f32 {
|
||||
if a.len() != b.len() {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
let dot_product: f32 = a.iter().zip(b.iter()).map(|(x, y)| x * y).sum();
|
||||
let magnitude_a: f32 = a.iter().map(|x| x * x).sum::<f32>().sqrt();
|
||||
let magnitude_b: f32 = b.iter().map(|x| x * x).sum::<f32>().sqrt();
|
||||
|
||||
if magnitude_a == 0.0 || magnitude_b == 0.0 {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
dot_product / (magnitude_a * magnitude_b)
|
||||
}
|
||||
}
|
||||
|
||||
impl DailySummaryDao for SqliteDailySummaryDao {
|
||||
fn store_summary(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
summary: InsertDailySummary,
|
||||
) -> Result<DailySummary, DbError> {
|
||||
trace_db_call(context, "insert", "store_summary", |_span| {
|
||||
let mut conn = self.connection.lock().expect("Unable to get DailySummaryDao");
|
||||
|
||||
// Validate embedding dimensions
|
||||
if summary.embedding.len() != 768 {
|
||||
return Err(anyhow::anyhow!(
|
||||
"Invalid embedding dimensions: {} (expected 768)",
|
||||
summary.embedding.len()
|
||||
));
|
||||
}
|
||||
|
||||
let embedding_bytes = Self::serialize_vector(&summary.embedding);
|
||||
|
||||
// INSERT OR REPLACE to handle updates if summary needs regeneration
|
||||
diesel::sql_query(
|
||||
"INSERT OR REPLACE INTO daily_conversation_summaries
|
||||
(date, contact, summary, message_count, embedding, created_at, model_version)
|
||||
VALUES (?1, ?2, ?3, ?4, ?5, ?6, ?7)"
|
||||
)
|
||||
.bind::<diesel::sql_types::Text, _>(&summary.date)
|
||||
.bind::<diesel::sql_types::Text, _>(&summary.contact)
|
||||
.bind::<diesel::sql_types::Text, _>(&summary.summary)
|
||||
.bind::<diesel::sql_types::Integer, _>(summary.message_count)
|
||||
.bind::<diesel::sql_types::Binary, _>(&embedding_bytes)
|
||||
.bind::<diesel::sql_types::BigInt, _>(summary.created_at)
|
||||
.bind::<diesel::sql_types::Text, _>(&summary.model_version)
|
||||
.execute(conn.deref_mut())
|
||||
.map_err(|e| anyhow::anyhow!("Insert error: {:?}", e))?;
|
||||
|
||||
let row_id: i32 = diesel::sql_query("SELECT last_insert_rowid() as id")
|
||||
.get_result::<LastInsertRowId>(conn.deref_mut())
|
||||
.map(|r| r.id as i32)
|
||||
.map_err(|e| anyhow::anyhow!("Failed to get last insert ID: {:?}", e))?;
|
||||
|
||||
Ok(DailySummary {
|
||||
id: row_id,
|
||||
date: summary.date,
|
||||
contact: summary.contact,
|
||||
summary: summary.summary,
|
||||
message_count: summary.message_count,
|
||||
created_at: summary.created_at,
|
||||
model_version: summary.model_version,
|
||||
})
|
||||
})
|
||||
.map_err(|_| DbError::new(DbErrorKind::InsertError))
|
||||
}
|
||||
|
||||
fn find_similar_summaries(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
query_embedding: &[f32],
|
||||
limit: usize,
|
||||
) -> Result<Vec<DailySummary>, DbError> {
|
||||
trace_db_call(context, "query", "find_similar_summaries", |_span| {
|
||||
let mut conn = self.connection.lock().expect("Unable to get DailySummaryDao");
|
||||
|
||||
if query_embedding.len() != 768 {
|
||||
return Err(anyhow::anyhow!(
|
||||
"Invalid query embedding dimensions: {} (expected 768)",
|
||||
query_embedding.len()
|
||||
));
|
||||
}
|
||||
|
||||
// Load all summaries with embeddings
|
||||
let results = diesel::sql_query(
|
||||
"SELECT id, date, contact, summary, message_count, embedding, created_at, model_version
|
||||
FROM daily_conversation_summaries"
|
||||
)
|
||||
.load::<DailySummaryWithVectorRow>(conn.deref_mut())
|
||||
.map_err(|e| anyhow::anyhow!("Query error: {:?}", e))?;
|
||||
|
||||
log::info!("Loaded {} daily summaries for similarity comparison", results.len());
|
||||
|
||||
// Compute similarity for each summary
|
||||
let mut scored_summaries: Vec<(f32, DailySummary)> = results
|
||||
.into_iter()
|
||||
.filter_map(|row| {
|
||||
match Self::deserialize_vector(&row.embedding) {
|
||||
Ok(embedding) => {
|
||||
let similarity = Self::cosine_similarity(query_embedding, &embedding);
|
||||
Some((
|
||||
similarity,
|
||||
DailySummary {
|
||||
id: row.id,
|
||||
date: row.date,
|
||||
contact: row.contact,
|
||||
summary: row.summary,
|
||||
message_count: row.message_count,
|
||||
created_at: row.created_at,
|
||||
model_version: row.model_version,
|
||||
},
|
||||
))
|
||||
}
|
||||
Err(e) => {
|
||||
log::warn!("Failed to deserialize embedding for summary {}: {:?}", row.id, e);
|
||||
None
|
||||
}
|
||||
}
|
||||
})
|
||||
.collect();
|
||||
|
||||
// Sort by similarity (highest first)
|
||||
scored_summaries.sort_by(|a, b| b.0.partial_cmp(&a.0).unwrap_or(std::cmp::Ordering::Equal));
|
||||
|
||||
// Log similarity distribution
|
||||
if !scored_summaries.is_empty() {
|
||||
log::info!(
|
||||
"Daily summary similarity - Top: {:.3}, Median: {:.3}, Count: {}",
|
||||
scored_summaries.first().map(|(s, _)| *s).unwrap_or(0.0),
|
||||
scored_summaries.get(scored_summaries.len() / 2).map(|(s, _)| *s).unwrap_or(0.0),
|
||||
scored_summaries.len()
|
||||
);
|
||||
}
|
||||
|
||||
// Take top N and log matches
|
||||
let top_results: Vec<DailySummary> = scored_summaries
|
||||
.into_iter()
|
||||
.take(limit)
|
||||
.map(|(similarity, summary)| {
|
||||
log::info!(
|
||||
"Summary match: similarity={:.3}, date={}, contact={}, summary=\"{}\"",
|
||||
similarity,
|
||||
summary.date,
|
||||
summary.contact,
|
||||
summary.summary.chars().take(100).collect::<String>()
|
||||
);
|
||||
summary
|
||||
})
|
||||
.collect();
|
||||
|
||||
Ok(top_results)
|
||||
})
|
||||
.map_err(|_| DbError::new(DbErrorKind::QueryError))
|
||||
}
|
||||
|
||||
fn summary_exists(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
date: &str,
|
||||
contact: &str,
|
||||
) -> Result<bool, DbError> {
|
||||
trace_db_call(context, "query", "summary_exists", |_span| {
|
||||
let mut conn = self.connection.lock().expect("Unable to get DailySummaryDao");
|
||||
|
||||
let count = diesel::sql_query(
|
||||
"SELECT COUNT(*) as count FROM daily_conversation_summaries
|
||||
WHERE date = ?1 AND contact = ?2"
|
||||
)
|
||||
.bind::<diesel::sql_types::Text, _>(date)
|
||||
.bind::<diesel::sql_types::Text, _>(contact)
|
||||
.get_result::<CountResult>(conn.deref_mut())
|
||||
.map(|r| r.count)
|
||||
.map_err(|e| anyhow::anyhow!("Count query error: {:?}", e))?;
|
||||
|
||||
Ok(count > 0)
|
||||
})
|
||||
.map_err(|_| DbError::new(DbErrorKind::QueryError))
|
||||
}
|
||||
|
||||
fn get_summary_count(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
contact: &str,
|
||||
) -> Result<i64, DbError> {
|
||||
trace_db_call(context, "query", "get_summary_count", |_span| {
|
||||
let mut conn = self.connection.lock().expect("Unable to get DailySummaryDao");
|
||||
|
||||
diesel::sql_query(
|
||||
"SELECT COUNT(*) as count FROM daily_conversation_summaries WHERE contact = ?1"
|
||||
)
|
||||
.bind::<diesel::sql_types::Text, _>(contact)
|
||||
.get_result::<CountResult>(conn.deref_mut())
|
||||
.map(|r| r.count)
|
||||
.map_err(|e| anyhow::anyhow!("Count query error: {:?}", e).into())
|
||||
})
|
||||
.map_err(|_| DbError::new(DbErrorKind::QueryError))
|
||||
}
|
||||
}
|
||||
|
||||
// Helper structs for raw SQL queries
|
||||
|
||||
#[derive(QueryableByName)]
|
||||
struct LastInsertRowId {
|
||||
#[diesel(sql_type = diesel::sql_types::BigInt)]
|
||||
id: i64,
|
||||
}
|
||||
|
||||
#[derive(QueryableByName)]
|
||||
struct DailySummaryWithVectorRow {
|
||||
#[diesel(sql_type = diesel::sql_types::Integer)]
|
||||
id: i32,
|
||||
#[diesel(sql_type = diesel::sql_types::Text)]
|
||||
date: String,
|
||||
#[diesel(sql_type = diesel::sql_types::Text)]
|
||||
contact: String,
|
||||
#[diesel(sql_type = diesel::sql_types::Text)]
|
||||
summary: String,
|
||||
#[diesel(sql_type = diesel::sql_types::Integer)]
|
||||
message_count: i32,
|
||||
#[diesel(sql_type = diesel::sql_types::Binary)]
|
||||
embedding: Vec<u8>,
|
||||
#[diesel(sql_type = diesel::sql_types::BigInt)]
|
||||
created_at: i64,
|
||||
#[diesel(sql_type = diesel::sql_types::Text)]
|
||||
model_version: String,
|
||||
}
|
||||
|
||||
#[derive(QueryableByName)]
|
||||
struct CountResult {
|
||||
#[diesel(sql_type = diesel::sql_types::BigInt)]
|
||||
count: i64,
|
||||
}
|
||||
569
src/database/embeddings_dao.rs
Normal file
569
src/database/embeddings_dao.rs
Normal file
@@ -0,0 +1,569 @@
|
||||
use diesel::prelude::*;
|
||||
use diesel::sqlite::SqliteConnection;
|
||||
use serde::Serialize;
|
||||
use std::ops::DerefMut;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
use crate::database::{DbError, DbErrorKind, connect};
|
||||
use crate::otel::trace_db_call;
|
||||
|
||||
/// Represents a stored message embedding
|
||||
#[derive(Serialize, Clone, Debug)]
|
||||
pub struct MessageEmbedding {
|
||||
pub id: i32,
|
||||
pub contact: String,
|
||||
pub body: String,
|
||||
pub timestamp: i64,
|
||||
pub is_sent: bool,
|
||||
pub created_at: i64,
|
||||
pub model_version: String,
|
||||
}
|
||||
|
||||
/// Data for inserting a new message embedding
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct InsertMessageEmbedding {
|
||||
pub contact: String,
|
||||
pub body: String,
|
||||
pub timestamp: i64,
|
||||
pub is_sent: bool,
|
||||
pub embedding: Vec<f32>,
|
||||
pub created_at: i64,
|
||||
pub model_version: String,
|
||||
}
|
||||
|
||||
pub trait EmbeddingDao: Sync + Send {
|
||||
/// Store a message with its embedding vector
|
||||
fn store_message_embedding(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
message: InsertMessageEmbedding,
|
||||
) -> Result<MessageEmbedding, DbError>;
|
||||
|
||||
/// Store multiple messages with embeddings in a single transaction
|
||||
/// Returns the number of successfully stored messages
|
||||
fn store_message_embeddings_batch(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
messages: Vec<InsertMessageEmbedding>,
|
||||
) -> Result<usize, DbError>;
|
||||
|
||||
/// Find semantically similar messages using vector similarity search
|
||||
/// Returns the top `limit` most similar messages
|
||||
/// If contact_filter is provided, only return messages from that contact
|
||||
/// Otherwise, search across all contacts for cross-perspective context
|
||||
fn find_similar_messages(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
query_embedding: &[f32],
|
||||
limit: usize,
|
||||
contact_filter: Option<&str>,
|
||||
) -> Result<Vec<MessageEmbedding>, DbError>;
|
||||
|
||||
/// Get the count of embedded messages for a specific contact
|
||||
fn get_message_count(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
contact: &str,
|
||||
) -> Result<i64, DbError>;
|
||||
|
||||
/// Check if embeddings exist for a contact (idempotency check)
|
||||
fn has_embeddings_for_contact(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
contact: &str,
|
||||
) -> Result<bool, DbError>;
|
||||
|
||||
/// Check if a specific message already has an embedding
|
||||
fn message_exists(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
contact: &str,
|
||||
body: &str,
|
||||
timestamp: i64,
|
||||
) -> Result<bool, DbError>;
|
||||
}
|
||||
|
||||
pub struct SqliteEmbeddingDao {
|
||||
connection: Arc<Mutex<SqliteConnection>>,
|
||||
}
|
||||
|
||||
impl Default for SqliteEmbeddingDao {
|
||||
fn default() -> Self {
|
||||
Self::new()
|
||||
}
|
||||
}
|
||||
|
||||
impl SqliteEmbeddingDao {
|
||||
pub fn new() -> Self {
|
||||
SqliteEmbeddingDao {
|
||||
connection: Arc::new(Mutex::new(connect())),
|
||||
}
|
||||
}
|
||||
|
||||
/// Serialize f32 vector to bytes for BLOB storage
|
||||
fn serialize_vector(vec: &[f32]) -> Vec<u8> {
|
||||
// Convert f32 slice to bytes using zerocopy
|
||||
use zerocopy::IntoBytes;
|
||||
vec.as_bytes().to_vec()
|
||||
}
|
||||
|
||||
/// Deserialize bytes from BLOB back to f32 vector
|
||||
fn deserialize_vector(bytes: &[u8]) -> Result<Vec<f32>, DbError> {
|
||||
if bytes.len() % 4 != 0 {
|
||||
return Err(DbError::new(DbErrorKind::QueryError));
|
||||
}
|
||||
|
||||
let count = bytes.len() / 4;
|
||||
let mut vec = Vec::with_capacity(count);
|
||||
|
||||
for chunk in bytes.chunks_exact(4) {
|
||||
let float = f32::from_le_bytes([chunk[0], chunk[1], chunk[2], chunk[3]]);
|
||||
vec.push(float);
|
||||
}
|
||||
|
||||
Ok(vec)
|
||||
}
|
||||
|
||||
/// Compute cosine similarity between two vectors
|
||||
fn cosine_similarity(a: &[f32], b: &[f32]) -> f32 {
|
||||
if a.len() != b.len() {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
let dot_product: f32 = a.iter().zip(b.iter()).map(|(x, y)| x * y).sum();
|
||||
let magnitude_a: f32 = a.iter().map(|x| x * x).sum::<f32>().sqrt();
|
||||
let magnitude_b: f32 = b.iter().map(|x| x * x).sum::<f32>().sqrt();
|
||||
|
||||
if magnitude_a == 0.0 || magnitude_b == 0.0 {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
dot_product / (magnitude_a * magnitude_b)
|
||||
}
|
||||
}
|
||||
|
||||
impl EmbeddingDao for SqliteEmbeddingDao {
|
||||
fn store_message_embedding(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
message: InsertMessageEmbedding,
|
||||
) -> Result<MessageEmbedding, DbError> {
|
||||
trace_db_call(context, "insert", "store_message_embedding", |_span| {
|
||||
let mut conn = self.connection.lock().expect("Unable to get EmbeddingDao");
|
||||
|
||||
// Validate embedding dimensions
|
||||
if message.embedding.len() != 768 {
|
||||
return Err(anyhow::anyhow!(
|
||||
"Invalid embedding dimensions: {} (expected 768)",
|
||||
message.embedding.len()
|
||||
));
|
||||
}
|
||||
|
||||
// Serialize embedding to bytes
|
||||
let embedding_bytes = Self::serialize_vector(&message.embedding);
|
||||
|
||||
// Insert into message_embeddings table with BLOB
|
||||
// Use INSERT OR IGNORE to skip duplicates (based on UNIQUE constraint)
|
||||
let insert_result = diesel::sql_query(
|
||||
"INSERT OR IGNORE INTO message_embeddings (contact, body, timestamp, is_sent, embedding, created_at, model_version)
|
||||
VALUES (?1, ?2, ?3, ?4, ?5, ?6, ?7)"
|
||||
)
|
||||
.bind::<diesel::sql_types::Text, _>(&message.contact)
|
||||
.bind::<diesel::sql_types::Text, _>(&message.body)
|
||||
.bind::<diesel::sql_types::BigInt, _>(message.timestamp)
|
||||
.bind::<diesel::sql_types::Bool, _>(message.is_sent)
|
||||
.bind::<diesel::sql_types::Binary, _>(&embedding_bytes)
|
||||
.bind::<diesel::sql_types::BigInt, _>(message.created_at)
|
||||
.bind::<diesel::sql_types::Text, _>(&message.model_version)
|
||||
.execute(conn.deref_mut())
|
||||
.map_err(|e| anyhow::anyhow!("Insert error: {:?}", e))?;
|
||||
|
||||
// If INSERT OR IGNORE skipped (duplicate), find the existing record
|
||||
let row_id: i32 = if insert_result == 0 {
|
||||
// Duplicate - find the existing record
|
||||
diesel::sql_query(
|
||||
"SELECT id FROM message_embeddings WHERE contact = ?1 AND body = ?2 AND timestamp = ?3"
|
||||
)
|
||||
.bind::<diesel::sql_types::Text, _>(&message.contact)
|
||||
.bind::<diesel::sql_types::Text, _>(&message.body)
|
||||
.bind::<diesel::sql_types::BigInt, _>(message.timestamp)
|
||||
.get_result::<LastInsertRowId>(conn.deref_mut())
|
||||
.map(|r| r.id as i32)
|
||||
.map_err(|e| anyhow::anyhow!("Failed to find existing record: {:?}", e))?
|
||||
} else {
|
||||
// New insert - get the last inserted row ID
|
||||
diesel::sql_query("SELECT last_insert_rowid() as id")
|
||||
.get_result::<LastInsertRowId>(conn.deref_mut())
|
||||
.map(|r| r.id as i32)
|
||||
.map_err(|e| anyhow::anyhow!("Failed to get last insert ID: {:?}", e))?
|
||||
};
|
||||
|
||||
// Return the stored message
|
||||
Ok(MessageEmbedding {
|
||||
id: row_id,
|
||||
contact: message.contact,
|
||||
body: message.body,
|
||||
timestamp: message.timestamp,
|
||||
is_sent: message.is_sent,
|
||||
created_at: message.created_at,
|
||||
model_version: message.model_version,
|
||||
})
|
||||
})
|
||||
.map_err(|_| DbError::new(DbErrorKind::InsertError))
|
||||
}
|
||||
|
||||
fn store_message_embeddings_batch(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
messages: Vec<InsertMessageEmbedding>,
|
||||
) -> Result<usize, DbError> {
|
||||
trace_db_call(context, "insert", "store_message_embeddings_batch", |_span| {
|
||||
let mut conn = self.connection.lock().expect("Unable to get EmbeddingDao");
|
||||
|
||||
// Start transaction
|
||||
conn.transaction::<_, anyhow::Error, _>(|conn| {
|
||||
let mut stored_count = 0;
|
||||
|
||||
for message in messages {
|
||||
// Validate embedding dimensions
|
||||
if message.embedding.len() != 768 {
|
||||
log::warn!(
|
||||
"Invalid embedding dimensions: {} (expected 768), skipping",
|
||||
message.embedding.len()
|
||||
);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Serialize embedding to bytes
|
||||
let embedding_bytes = Self::serialize_vector(&message.embedding);
|
||||
|
||||
// Insert into message_embeddings table with BLOB
|
||||
// Use INSERT OR IGNORE to skip duplicates (based on UNIQUE constraint)
|
||||
match diesel::sql_query(
|
||||
"INSERT OR IGNORE INTO message_embeddings (contact, body, timestamp, is_sent, embedding, created_at, model_version)
|
||||
VALUES (?1, ?2, ?3, ?4, ?5, ?6, ?7)"
|
||||
)
|
||||
.bind::<diesel::sql_types::Text, _>(&message.contact)
|
||||
.bind::<diesel::sql_types::Text, _>(&message.body)
|
||||
.bind::<diesel::sql_types::BigInt, _>(message.timestamp)
|
||||
.bind::<diesel::sql_types::Bool, _>(message.is_sent)
|
||||
.bind::<diesel::sql_types::Binary, _>(&embedding_bytes)
|
||||
.bind::<diesel::sql_types::BigInt, _>(message.created_at)
|
||||
.bind::<diesel::sql_types::Text, _>(&message.model_version)
|
||||
.execute(conn)
|
||||
{
|
||||
Ok(rows) if rows > 0 => stored_count += 1,
|
||||
Ok(_) => {
|
||||
// INSERT OR IGNORE skipped (duplicate)
|
||||
log::debug!("Skipped duplicate message: {:?}", message.body.chars().take(50).collect::<String>());
|
||||
}
|
||||
Err(e) => {
|
||||
log::warn!("Failed to insert message in batch: {:?}", e);
|
||||
// Continue with other messages instead of failing entire batch
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(stored_count)
|
||||
})
|
||||
.map_err(|e| anyhow::anyhow!("Transaction error: {:?}", e))
|
||||
})
|
||||
.map_err(|_| DbError::new(DbErrorKind::InsertError))
|
||||
}
|
||||
|
||||
fn find_similar_messages(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
query_embedding: &[f32],
|
||||
limit: usize,
|
||||
contact_filter: Option<&str>,
|
||||
) -> Result<Vec<MessageEmbedding>, DbError> {
|
||||
trace_db_call(context, "query", "find_similar_messages", |_span| {
|
||||
let mut conn = self.connection.lock().expect("Unable to get EmbeddingDao");
|
||||
|
||||
// Validate embedding dimensions
|
||||
if query_embedding.len() != 768 {
|
||||
return Err(anyhow::anyhow!(
|
||||
"Invalid query embedding dimensions: {} (expected 768)",
|
||||
query_embedding.len()
|
||||
));
|
||||
}
|
||||
|
||||
// Load messages with optional contact filter
|
||||
let results = if let Some(contact) = contact_filter {
|
||||
log::debug!("RAG search filtered to contact: {}", contact);
|
||||
diesel::sql_query(
|
||||
"SELECT id, contact, body, timestamp, is_sent, embedding, created_at, model_version
|
||||
FROM message_embeddings WHERE contact = ?1"
|
||||
)
|
||||
.bind::<diesel::sql_types::Text, _>(contact)
|
||||
.load::<MessageEmbeddingWithVectorRow>(conn.deref_mut())
|
||||
.map_err(|e| anyhow::anyhow!("Query error: {:?}", e))?
|
||||
} else {
|
||||
log::debug!("RAG search across ALL contacts (cross-perspective)");
|
||||
diesel::sql_query(
|
||||
"SELECT id, contact, body, timestamp, is_sent, embedding, created_at, model_version
|
||||
FROM message_embeddings"
|
||||
)
|
||||
.load::<MessageEmbeddingWithVectorRow>(conn.deref_mut())
|
||||
.map_err(|e| anyhow::anyhow!("Query error: {:?}", e))?
|
||||
};
|
||||
|
||||
log::debug!("Loaded {} messages for similarity comparison", results.len());
|
||||
|
||||
// Compute similarity for each message
|
||||
let mut scored_messages: Vec<(f32, MessageEmbedding)> = results
|
||||
.into_iter()
|
||||
.filter_map(|row| {
|
||||
// Deserialize the embedding BLOB
|
||||
match Self::deserialize_vector(&row.embedding) {
|
||||
Ok(embedding) => {
|
||||
// Compute cosine similarity
|
||||
let similarity = Self::cosine_similarity(query_embedding, &embedding);
|
||||
Some((
|
||||
similarity,
|
||||
MessageEmbedding {
|
||||
id: row.id,
|
||||
contact: row.contact,
|
||||
body: row.body,
|
||||
timestamp: row.timestamp,
|
||||
is_sent: row.is_sent,
|
||||
created_at: row.created_at,
|
||||
model_version: row.model_version,
|
||||
},
|
||||
))
|
||||
}
|
||||
Err(e) => {
|
||||
log::warn!("Failed to deserialize embedding for message {}: {:?}", row.id, e);
|
||||
None
|
||||
}
|
||||
}
|
||||
})
|
||||
.collect();
|
||||
|
||||
// Sort by similarity (highest first)
|
||||
scored_messages.sort_by(|a, b| b.0.partial_cmp(&a.0).unwrap_or(std::cmp::Ordering::Equal));
|
||||
|
||||
// Log similarity score distribution
|
||||
if !scored_messages.is_empty() {
|
||||
log::info!(
|
||||
"Similarity score distribution - Top: {:.3}, Median: {:.3}, Bottom: {:.3}",
|
||||
scored_messages.first().map(|(s, _)| *s).unwrap_or(0.0),
|
||||
scored_messages.get(scored_messages.len() / 2).map(|(s, _)| *s).unwrap_or(0.0),
|
||||
scored_messages.last().map(|(s, _)| *s).unwrap_or(0.0)
|
||||
);
|
||||
}
|
||||
|
||||
// Apply minimum similarity threshold
|
||||
// With single-contact embeddings, scores tend to be higher due to writing style similarity
|
||||
// Using 0.65 to get only truly semantically relevant messages
|
||||
let min_similarity = 0.65;
|
||||
let filtered_messages: Vec<(f32, MessageEmbedding)> = scored_messages
|
||||
.into_iter()
|
||||
.filter(|(similarity, _)| *similarity >= min_similarity)
|
||||
.collect();
|
||||
|
||||
log::info!(
|
||||
"After similarity filtering (min_similarity={}): {} messages passed threshold",
|
||||
min_similarity,
|
||||
filtered_messages.len()
|
||||
);
|
||||
|
||||
// Filter out short/generic messages (under 30 characters)
|
||||
// This removes conversational closings like "Thanks for talking" that dominate results
|
||||
let min_message_length = 30;
|
||||
|
||||
// Common closing phrases that should be excluded from RAG results
|
||||
let stop_phrases = [
|
||||
"thanks for talking",
|
||||
"thank you for talking",
|
||||
"good talking",
|
||||
"nice talking",
|
||||
"good night",
|
||||
"good morning",
|
||||
"love you",
|
||||
];
|
||||
|
||||
let filtered_messages: Vec<(f32, MessageEmbedding)> = filtered_messages
|
||||
.into_iter()
|
||||
.filter(|(_, message)| {
|
||||
// Filter by length
|
||||
if message.body.len() < min_message_length {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Filter out messages that are primarily generic closings
|
||||
let body_lower = message.body.to_lowercase();
|
||||
for phrase in &stop_phrases {
|
||||
// If the message contains this phrase and is short, it's likely just a closing
|
||||
if body_lower.contains(phrase) && message.body.len() < 100 {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
true
|
||||
})
|
||||
.collect();
|
||||
|
||||
log::info!(
|
||||
"After length filtering (min {} chars): {} messages remain",
|
||||
min_message_length,
|
||||
filtered_messages.len()
|
||||
);
|
||||
|
||||
// Apply temporal diversity filter - don't return too many messages from the same day
|
||||
// This prevents RAG from returning clusters of messages from one conversation
|
||||
let mut filtered_with_diversity = Vec::new();
|
||||
let mut dates_seen: std::collections::HashMap<chrono::NaiveDate, usize> = std::collections::HashMap::new();
|
||||
let max_per_day = 3; // Maximum 3 messages from any single day
|
||||
|
||||
for (similarity, message) in filtered_messages.into_iter() {
|
||||
let date = chrono::DateTime::from_timestamp(message.timestamp, 0)
|
||||
.map(|dt| dt.date_naive())
|
||||
.unwrap_or_else(|| chrono::Utc::now().date_naive());
|
||||
|
||||
let count = dates_seen.entry(date).or_insert(0);
|
||||
if *count < max_per_day {
|
||||
*count += 1;
|
||||
filtered_with_diversity.push((similarity, message));
|
||||
}
|
||||
}
|
||||
|
||||
log::info!(
|
||||
"After temporal diversity filtering (max {} per day): {} messages remain",
|
||||
max_per_day,
|
||||
filtered_with_diversity.len()
|
||||
);
|
||||
|
||||
// Take top N results from diversity-filtered messages
|
||||
let top_results: Vec<MessageEmbedding> = filtered_with_diversity
|
||||
.into_iter()
|
||||
.take(limit)
|
||||
.map(|(similarity, message)| {
|
||||
let time = chrono::DateTime::from_timestamp(message.timestamp, 0)
|
||||
.map(|dt| dt.format("%Y-%m-%d").to_string())
|
||||
.unwrap_or_default();
|
||||
log::info!(
|
||||
"RAG Match: similarity={:.3}, date={}, contact={}, body=\"{}\"",
|
||||
similarity,
|
||||
time,
|
||||
message.contact,
|
||||
&message.body.chars().take(80).collect::<String>()
|
||||
);
|
||||
message
|
||||
})
|
||||
.collect();
|
||||
|
||||
Ok(top_results)
|
||||
})
|
||||
.map_err(|_| DbError::new(DbErrorKind::QueryError))
|
||||
}
|
||||
|
||||
fn get_message_count(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
contact: &str,
|
||||
) -> Result<i64, DbError> {
|
||||
trace_db_call(context, "query", "get_message_count", |_span| {
|
||||
let mut conn = self.connection.lock().expect("Unable to get EmbeddingDao");
|
||||
|
||||
let count = diesel::sql_query(
|
||||
"SELECT COUNT(*) as count FROM message_embeddings WHERE contact = ?1"
|
||||
)
|
||||
.bind::<diesel::sql_types::Text, _>(contact)
|
||||
.get_result::<CountResult>(conn.deref_mut())
|
||||
.map(|r| r.count)
|
||||
.map_err(|e| anyhow::anyhow!("Count query error: {:?}", e))?;
|
||||
|
||||
Ok(count)
|
||||
})
|
||||
.map_err(|_| DbError::new(DbErrorKind::QueryError))
|
||||
}
|
||||
|
||||
fn has_embeddings_for_contact(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
contact: &str,
|
||||
) -> Result<bool, DbError> {
|
||||
self.get_message_count(context, contact)
|
||||
.map(|count| count > 0)
|
||||
}
|
||||
|
||||
fn message_exists(
|
||||
&mut self,
|
||||
context: &opentelemetry::Context,
|
||||
contact: &str,
|
||||
body: &str,
|
||||
timestamp: i64,
|
||||
) -> Result<bool, DbError> {
|
||||
trace_db_call(context, "query", "message_exists", |_span| {
|
||||
let mut conn = self.connection.lock().expect("Unable to get EmbeddingDao");
|
||||
|
||||
let count = diesel::sql_query(
|
||||
"SELECT COUNT(*) as count FROM message_embeddings
|
||||
WHERE contact = ?1 AND body = ?2 AND timestamp = ?3"
|
||||
)
|
||||
.bind::<diesel::sql_types::Text, _>(contact)
|
||||
.bind::<diesel::sql_types::Text, _>(body)
|
||||
.bind::<diesel::sql_types::BigInt, _>(timestamp)
|
||||
.get_result::<CountResult>(conn.deref_mut())
|
||||
.map(|r| r.count)
|
||||
.map_err(|e| anyhow::anyhow!("Count query error: {:?}", e))?;
|
||||
|
||||
Ok(count > 0)
|
||||
})
|
||||
.map_err(|_| DbError::new(DbErrorKind::QueryError))
|
||||
}
|
||||
}
|
||||
|
||||
// Helper structs for raw SQL queries
|
||||
|
||||
#[derive(QueryableByName)]
|
||||
struct LastInsertRowId {
|
||||
#[diesel(sql_type = diesel::sql_types::BigInt)]
|
||||
id: i64,
|
||||
}
|
||||
|
||||
#[derive(QueryableByName)]
|
||||
struct MessageEmbeddingRow {
|
||||
#[diesel(sql_type = diesel::sql_types::Integer)]
|
||||
id: i32,
|
||||
#[diesel(sql_type = diesel::sql_types::Text)]
|
||||
contact: String,
|
||||
#[diesel(sql_type = diesel::sql_types::Text)]
|
||||
body: String,
|
||||
#[diesel(sql_type = diesel::sql_types::BigInt)]
|
||||
timestamp: i64,
|
||||
#[diesel(sql_type = diesel::sql_types::Bool)]
|
||||
is_sent: bool,
|
||||
#[diesel(sql_type = diesel::sql_types::BigInt)]
|
||||
created_at: i64,
|
||||
#[diesel(sql_type = diesel::sql_types::Text)]
|
||||
model_version: String,
|
||||
}
|
||||
|
||||
#[derive(QueryableByName)]
|
||||
struct MessageEmbeddingWithVectorRow {
|
||||
#[diesel(sql_type = diesel::sql_types::Integer)]
|
||||
id: i32,
|
||||
#[diesel(sql_type = diesel::sql_types::Text)]
|
||||
contact: String,
|
||||
#[diesel(sql_type = diesel::sql_types::Text)]
|
||||
body: String,
|
||||
#[diesel(sql_type = diesel::sql_types::BigInt)]
|
||||
timestamp: i64,
|
||||
#[diesel(sql_type = diesel::sql_types::Bool)]
|
||||
is_sent: bool,
|
||||
#[diesel(sql_type = diesel::sql_types::Binary)]
|
||||
embedding: Vec<u8>,
|
||||
#[diesel(sql_type = diesel::sql_types::BigInt)]
|
||||
created_at: i64,
|
||||
#[diesel(sql_type = diesel::sql_types::Text)]
|
||||
model_version: String,
|
||||
}
|
||||
|
||||
#[derive(QueryableByName)]
|
||||
struct CountResult {
|
||||
#[diesel(sql_type = diesel::sql_types::BigInt)]
|
||||
count: i64,
|
||||
}
|
||||
@@ -9,11 +9,15 @@ use crate::database::models::{
|
||||
};
|
||||
use crate::otel::trace_db_call;
|
||||
|
||||
pub mod embeddings_dao;
|
||||
pub mod daily_summary_dao;
|
||||
pub mod insights_dao;
|
||||
pub mod models;
|
||||
pub mod schema;
|
||||
|
||||
pub use embeddings_dao::{EmbeddingDao, InsertMessageEmbedding, SqliteEmbeddingDao};
|
||||
pub use insights_dao::{InsightDao, SqliteInsightDao};
|
||||
pub use daily_summary_dao::{DailySummaryDao, SqliteDailySummaryDao, DailySummary, InsertDailySummary};
|
||||
|
||||
pub trait UserDao {
|
||||
fn create_user(&mut self, user: &str, password: &str) -> Option<User>;
|
||||
|
||||
46
src/main.rs
46
src/main.rs
@@ -718,7 +718,7 @@ fn main() -> std::io::Result<()> {
|
||||
}
|
||||
|
||||
create_thumbnails();
|
||||
generate_video_gifs().await;
|
||||
// generate_video_gifs().await;
|
||||
|
||||
let app_data = Data::new(AppState::default());
|
||||
|
||||
@@ -742,6 +742,50 @@ fn main() -> std::io::Result<()> {
|
||||
directory: app_state.base_path.clone(),
|
||||
});
|
||||
|
||||
// Spawn background job to generate daily conversation summaries
|
||||
{
|
||||
use crate::ai::generate_daily_summaries;
|
||||
use crate::database::{DailySummaryDao, SqliteDailySummaryDao};
|
||||
use chrono::NaiveDate;
|
||||
|
||||
// Configure date range for summary generation
|
||||
// Default: August 2024 ±30 days (July 1 - September 30, 2024)
|
||||
// To expand: change start_date and end_date
|
||||
let start_date = Some(NaiveDate::from_ymd_opt(2015, 10, 1).unwrap());
|
||||
let end_date = Some(NaiveDate::from_ymd_opt(2020, 1, 1).unwrap());
|
||||
|
||||
let contacts_to_summarize = vec!["Domenique", "Zach", "Paul"]; // Add more contacts as needed
|
||||
|
||||
let ollama = app_state.ollama.clone();
|
||||
let sms_client = app_state.sms_client.clone();
|
||||
|
||||
for contact in contacts_to_summarize {
|
||||
let ollama_clone = ollama.clone();
|
||||
let sms_client_clone = sms_client.clone();
|
||||
let summary_dao: Arc<Mutex<Box<dyn DailySummaryDao>>> =
|
||||
Arc::new(Mutex::new(Box::new(SqliteDailySummaryDao::new())));
|
||||
|
||||
let start = start_date;
|
||||
let end = end_date;
|
||||
|
||||
tokio::spawn(async move {
|
||||
log::info!("Starting daily summary generation for {}", contact);
|
||||
if let Err(e) = generate_daily_summaries(
|
||||
contact,
|
||||
start,
|
||||
end,
|
||||
&ollama_clone,
|
||||
&sms_client_clone,
|
||||
summary_dao
|
||||
).await {
|
||||
log::error!("Daily summary generation failed for {}: {:?}", contact, e);
|
||||
} else {
|
||||
log::info!("Daily summary generation completed for {}", contact);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
HttpServer::new(move || {
|
||||
let user_dao = SqliteUserDao::new();
|
||||
let favorites_dao = SqliteFavoriteDao::new();
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
use crate::ai::{InsightGenerator, OllamaClient, SmsApiClient};
|
||||
use crate::database::{ExifDao, InsightDao, SqliteExifDao, SqliteInsightDao};
|
||||
use crate::database::{DailySummaryDao, ExifDao, InsightDao, SqliteDailySummaryDao, SqliteExifDao, SqliteInsightDao};
|
||||
use crate::video::actors::{PlaylistGenerator, StreamActor, VideoPlaylistManager};
|
||||
use actix::{Actor, Addr};
|
||||
use std::env;
|
||||
@@ -91,6 +91,8 @@ impl Default for AppState {
|
||||
Arc::new(Mutex::new(Box::new(SqliteInsightDao::new())));
|
||||
let exif_dao: Arc<Mutex<Box<dyn ExifDao>>> =
|
||||
Arc::new(Mutex::new(Box::new(SqliteExifDao::new())));
|
||||
let daily_summary_dao: Arc<Mutex<Box<dyn DailySummaryDao>>> =
|
||||
Arc::new(Mutex::new(Box::new(SqliteDailySummaryDao::new())));
|
||||
|
||||
// Load base path
|
||||
let base_path = env::var("BASE_PATH").expect("BASE_PATH was not set in the env");
|
||||
@@ -101,6 +103,7 @@ impl Default for AppState {
|
||||
sms_client.clone(),
|
||||
insight_dao.clone(),
|
||||
exif_dao.clone(),
|
||||
daily_summary_dao.clone(),
|
||||
base_path.clone(),
|
||||
);
|
||||
|
||||
@@ -147,6 +150,8 @@ impl AppState {
|
||||
Arc::new(Mutex::new(Box::new(SqliteInsightDao::new())));
|
||||
let exif_dao: Arc<Mutex<Box<dyn ExifDao>>> =
|
||||
Arc::new(Mutex::new(Box::new(SqliteExifDao::new())));
|
||||
let daily_summary_dao: Arc<Mutex<Box<dyn DailySummaryDao>>> =
|
||||
Arc::new(Mutex::new(Box::new(SqliteDailySummaryDao::new())));
|
||||
|
||||
// Initialize test InsightGenerator
|
||||
let base_path_str = base_path.to_string_lossy().to_string();
|
||||
@@ -155,6 +160,7 @@ impl AppState {
|
||||
sms_client.clone(),
|
||||
insight_dao.clone(),
|
||||
exif_dao.clone(),
|
||||
daily_summary_dao.clone(),
|
||||
base_path_str.clone(),
|
||||
);
|
||||
|
||||
|
||||
Reference in New Issue
Block a user