Enhanced Insights with daily summary embeddings

Bump to 0.5.0. Added daily summary generation job
This commit is contained in:
Cameron
2026-01-05 09:13:16 -05:00
parent 43b7c2b8ec
commit 11e725c443
18 changed files with 2348 additions and 61 deletions

5
Cargo.lock generated
View File

@@ -1689,7 +1689,7 @@ dependencies = [
[[package]]
name = "image-api"
version = "0.4.1"
version = "0.5.0"
dependencies = [
"actix",
"actix-cors",
@@ -1713,6 +1713,7 @@ dependencies = [
"jsonwebtoken",
"kamadak-exif",
"lazy_static",
"libsqlite3-sys",
"log",
"opentelemetry",
"opentelemetry-appender-log",
@@ -1731,6 +1732,7 @@ dependencies = [
"tokio",
"urlencoding",
"walkdir",
"zerocopy",
]
[[package]]
@@ -1943,6 +1945,7 @@ version = "0.35.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "133c182a6a2c87864fe97778797e46c7e999672690dc9fa3ee8e241aa4a9c13f"
dependencies = [
"cc",
"pkg-config",
"vcpkg",
]

View File

@@ -1,6 +1,6 @@
[package]
name = "image-api"
version = "0.4.1"
version = "0.5.0"
authors = ["Cameron Cordes <cameronc.dev@gmail.com>"]
edition = "2024"
@@ -23,6 +23,7 @@ jsonwebtoken = "9.3.0"
serde = "1"
serde_json = "1"
diesel = { version = "2.2.10", features = ["sqlite"] }
libsqlite3-sys = { version = "0.35", features = ["bundled"] }
diesel_migrations = "2.2.0"
chrono = "0.4"
clap = { version = "4.5", features = ["derive"] }
@@ -50,3 +51,4 @@ regex = "1.11.1"
exif = { package = "kamadak-exif", version = "0.6.1" }
reqwest = { version = "0.12", features = ["json"] }
urlencoding = "2.1"
zerocopy = "0.8"

View File

@@ -0,0 +1,3 @@
-- Drop tables in reverse order
DROP TABLE IF EXISTS vec_message_embeddings;
DROP TABLE IF EXISTS message_embeddings;

View File

@@ -0,0 +1,19 @@
-- Table for storing message metadata and embeddings
-- Embeddings stored as BLOB for proof-of-concept
-- For production with many contacts, consider using sqlite-vec extension
CREATE TABLE message_embeddings (
id INTEGER PRIMARY KEY NOT NULL,
contact TEXT NOT NULL,
body TEXT NOT NULL,
timestamp BIGINT NOT NULL,
is_sent BOOLEAN NOT NULL,
embedding BLOB NOT NULL,
created_at BIGINT NOT NULL,
model_version TEXT NOT NULL,
-- Prevent duplicate embeddings for the same message
UNIQUE(contact, body, timestamp)
);
-- Indexes for efficient queries
CREATE INDEX idx_message_embeddings_contact ON message_embeddings(contact);
CREATE INDEX idx_message_embeddings_timestamp ON message_embeddings(timestamp);

View File

@@ -0,0 +1 @@
DROP TABLE daily_conversation_summaries;

View File

@@ -0,0 +1,19 @@
-- Daily conversation summaries for improved RAG quality
-- Each row = one day's conversation with a contact, summarized by LLM and embedded
CREATE TABLE daily_conversation_summaries (
id INTEGER PRIMARY KEY NOT NULL,
date TEXT NOT NULL, -- ISO date "2024-08-15"
contact TEXT NOT NULL, -- Contact name
summary TEXT NOT NULL, -- LLM-generated 3-5 sentence summary
message_count INTEGER NOT NULL, -- Number of messages in this day
embedding BLOB NOT NULL, -- 768-dim vector of the summary
created_at BIGINT NOT NULL, -- When this summary was generated
model_version TEXT NOT NULL, -- "nomic-embed-text:v1.5"
UNIQUE(date, contact)
);
-- Indexes for efficient querying
CREATE INDEX idx_daily_summaries_date ON daily_conversation_summaries(date);
CREATE INDEX idx_daily_summaries_contact ON daily_conversation_summaries(contact);
CREATE INDEX idx_daily_summaries_date_contact ON daily_conversation_summaries(date, contact);

289
src/ai/daily_summary_job.rs Normal file
View File

@@ -0,0 +1,289 @@
use anyhow::Result;
use chrono::{NaiveDate, Utc};
use opentelemetry::trace::{Span, Status, TraceContextExt, Tracer};
use opentelemetry::KeyValue;
use std::collections::HashMap;
use std::sync::{Arc, Mutex};
use tokio::time::sleep;
use crate::ai::{OllamaClient, SmsApiClient, SmsMessage};
use crate::database::{DailySummaryDao, InsertDailySummary};
use crate::otel::global_tracer;
/// Generate and embed daily conversation summaries for a date range
/// Default: August 2024 ±30 days (July 1 - September 30, 2024)
pub async fn generate_daily_summaries(
contact: &str,
start_date: Option<NaiveDate>,
end_date: Option<NaiveDate>,
ollama: &OllamaClient,
sms_client: &SmsApiClient,
summary_dao: Arc<Mutex<Box<dyn DailySummaryDao>>>,
) -> Result<()> {
let tracer = global_tracer();
// Get current context (empty in background task) and start span with it
let current_cx = opentelemetry::Context::current();
let mut span = tracer.start_with_context("ai.daily_summary.generate_batch", &current_cx);
span.set_attribute(KeyValue::new("contact", contact.to_string()));
// Create context with this span for child operations
let parent_cx = current_cx.with_span(span);
// Default to August 2024 ±30 days
let start = start_date.unwrap_or_else(|| NaiveDate::from_ymd_opt(2024, 7, 1).unwrap());
let end = end_date.unwrap_or_else(|| NaiveDate::from_ymd_opt(2024, 9, 30).unwrap());
parent_cx.span().set_attribute(KeyValue::new("start_date", start.to_string()));
parent_cx.span().set_attribute(KeyValue::new("end_date", end.to_string()));
parent_cx.span().set_attribute(KeyValue::new("date_range_days", (end - start).num_days() + 1));
log::info!(
"========================================");
log::info!("Starting daily summary generation for {}", contact);
log::info!("Date range: {} to {} ({} days)",
start, end, (end - start).num_days() + 1
);
log::info!("========================================");
// Fetch all messages for the contact in the date range
log::info!("Fetching messages for date range...");
let _start_timestamp = start
.and_hms_opt(0, 0, 0)
.unwrap()
.and_utc()
.timestamp();
let _end_timestamp = end
.and_hms_opt(23, 59, 59)
.unwrap()
.and_utc()
.timestamp();
let all_messages = sms_client
.fetch_all_messages_for_contact(contact)
.await?;
// Filter to date range and group by date
let mut messages_by_date: HashMap<NaiveDate, Vec<SmsMessage>> = HashMap::new();
for msg in all_messages {
let msg_dt = chrono::DateTime::from_timestamp(msg.timestamp, 0);
if let Some(dt) = msg_dt {
let date = dt.date_naive();
if date >= start && date <= end {
messages_by_date
.entry(date)
.or_insert_with(Vec::new)
.push(msg);
}
}
}
log::info!(
"Grouped messages into {} days with activity",
messages_by_date.len()
);
if messages_by_date.is_empty() {
log::warn!("No messages found in date range");
return Ok(());
}
// Sort dates for ordered processing
let mut dates: Vec<NaiveDate> = messages_by_date.keys().cloned().collect();
dates.sort();
let total_days = dates.len();
let mut processed = 0;
let mut skipped = 0;
let mut failed = 0;
log::info!("Processing {} days with messages...", total_days);
for (idx, date) in dates.iter().enumerate() {
let messages = messages_by_date.get(date).unwrap();
let date_str = date.format("%Y-%m-%d").to_string();
// Check if summary already exists
{
let mut dao = summary_dao.lock().expect("Unable to lock DailySummaryDao");
let otel_context = opentelemetry::Context::new();
if dao.summary_exists(&otel_context, &date_str, contact).unwrap_or(false) {
skipped += 1;
if idx % 10 == 0 {
log::info!(
"Progress: {}/{} ({} processed, {} skipped)",
idx + 1,
total_days,
processed,
skipped
);
}
continue;
}
}
// Generate summary for this day
match generate_and_store_daily_summary(
&parent_cx,
date,
contact,
messages,
ollama,
summary_dao.clone(),
)
.await
{
Ok(_) => {
processed += 1;
log::info!(
"✓ {}/{}: {} ({} messages)",
idx + 1,
total_days,
date_str,
messages.len()
);
}
Err(e) => {
failed += 1;
log::error!("✗ Failed to process {}: {:?}", date_str, e);
}
}
// Rate limiting: sleep 500ms between summaries
if idx < total_days - 1 {
sleep(std::time::Duration::from_millis(500)).await;
}
// Progress logging every 10 days
if idx % 10 == 0 && idx > 0 {
log::info!(
"Progress: {}/{} ({} processed, {} skipped, {} failed)",
idx + 1,
total_days,
processed,
skipped,
failed
);
}
}
log::info!("========================================");
log::info!("Daily summary generation complete!");
log::info!("Processed: {}, Skipped: {}, Failed: {}", processed, skipped, failed);
log::info!("========================================");
// Record final metrics in span
parent_cx.span().set_attribute(KeyValue::new("days_processed", processed as i64));
parent_cx.span().set_attribute(KeyValue::new("days_skipped", skipped as i64));
parent_cx.span().set_attribute(KeyValue::new("days_failed", failed as i64));
parent_cx.span().set_attribute(KeyValue::new("total_days", total_days as i64));
if failed > 0 {
parent_cx.span().set_status(Status::error(format!("{} days failed to process", failed)));
} else {
parent_cx.span().set_status(Status::Ok);
}
Ok(())
}
/// Generate and store a single day's summary
async fn generate_and_store_daily_summary(
parent_cx: &opentelemetry::Context,
date: &NaiveDate,
contact: &str,
messages: &[SmsMessage],
ollama: &OllamaClient,
summary_dao: Arc<Mutex<Box<dyn DailySummaryDao>>>,
) -> Result<()> {
let tracer = global_tracer();
let mut span = tracer.start_with_context("ai.daily_summary.generate_single", parent_cx);
span.set_attribute(KeyValue::new("date", date.to_string()));
span.set_attribute(KeyValue::new("contact", contact.to_string()));
span.set_attribute(KeyValue::new("message_count", messages.len() as i64));
// Format messages for LLM
let messages_text: String = messages
.iter()
.take(200) // Limit to 200 messages per day to avoid token overflow
.map(|m| {
if m.is_sent {
format!("Me: {}", m.body)
} else {
format!("{}: {}", m.contact, m.body)
}
})
.collect::<Vec<_>>()
.join("\n");
let weekday = date.format("%A");
let prompt = format!(
r#"Summarize this day's conversation in 3-5 sentences. Focus on:
- Key topics, activities, and events discussed
- Places, people, or organizations mentioned
- Plans made or decisions discussed
- Overall mood or themes of the day
IMPORTANT: Clearly distinguish between what "I" or "Me" did versus what {} did.
Always explicitly attribute actions, plans, and activities to the correct person.
Use "I" or "Me" for my actions and "{}" for their actions.
Date: {} ({})
Messages:
{}
Write a natural, informative summary with clear subject attribution.
Summary:"#,
contact,
contact,
date.format("%B %d, %Y"),
weekday,
messages_text
);
// Generate summary with LLM
let summary = ollama
.generate(
&prompt,
Some("You are a conversation summarizer. Create clear, factual summaries that maintain precise subject attribution - clearly distinguishing who said or did what."),
)
.await?;
log::debug!("Generated summary for {}: {}", date, summary.chars().take(100).collect::<String>());
span.set_attribute(KeyValue::new("summary_length", summary.len() as i64));
// Embed the summary
let embedding = ollama.generate_embedding(&summary).await?;
span.set_attribute(KeyValue::new("embedding_dimensions", embedding.len() as i64));
// Store in database
let insert = InsertDailySummary {
date: date.format("%Y-%m-%d").to_string(),
contact: contact.to_string(),
summary: summary.trim().to_string(),
message_count: messages.len() as i32,
embedding,
created_at: Utc::now().timestamp(),
model_version: "nomic-embed-text:v1.5".to_string(),
};
// Create context from current span for DB operation
let child_cx = opentelemetry::Context::current_with_span(span);
let mut dao = summary_dao.lock().expect("Unable to lock DailySummaryDao");
let result = dao.store_summary(&child_cx, insert)
.map_err(|e| anyhow::anyhow!("Failed to store summary: {:?}", e));
match &result {
Ok(_) => child_cx.span().set_status(Status::Ok),
Err(e) => child_cx.span().set_status(Status::error(e.to_string())),
}
result?;
Ok(())
}

213
src/ai/embedding_job.rs Normal file
View File

@@ -0,0 +1,213 @@
use anyhow::Result;
use chrono::Utc;
use std::sync::{Arc, Mutex};
use tokio::time::{sleep, Duration};
use crate::ai::{OllamaClient, SmsApiClient};
use crate::database::{EmbeddingDao, InsertMessageEmbedding};
/// Background job to embed messages for a specific contact
/// This function is idempotent - it checks if embeddings already exist before processing
///
/// # Arguments
/// * `contact` - The contact name to embed messages for (e.g., "Amanda")
/// * `ollama` - Ollama client for generating embeddings
/// * `sms_client` - SMS API client for fetching messages
/// * `embedding_dao` - DAO for storing embeddings in the database
///
/// # Returns
/// Ok(()) on success, Err on failure
pub async fn embed_contact_messages(
contact: &str,
ollama: &OllamaClient,
sms_client: &SmsApiClient,
embedding_dao: Arc<Mutex<Box<dyn EmbeddingDao>>>,
) -> Result<()> {
log::info!("Starting message embedding job for contact: {}", contact);
let otel_context = opentelemetry::Context::new();
// Check existing embeddings count
let existing_count = {
let mut dao = embedding_dao.lock().expect("Unable to lock EmbeddingDao");
dao.get_message_count(&otel_context, contact)
.unwrap_or(0)
};
if existing_count > 0 {
log::info!(
"Contact '{}' already has {} embeddings, will check for new messages to embed",
contact,
existing_count
);
}
log::info!("Fetching all messages for contact: {}", contact);
// Fetch all messages for the contact
let messages = sms_client
.fetch_all_messages_for_contact(contact)
.await?;
let total_messages = messages.len();
log::info!("Fetched {} messages for contact '{}'", total_messages, contact);
if total_messages == 0 {
log::warn!("No messages found for contact '{}', nothing to embed", contact);
return Ok(());
}
// Filter out messages that already have embeddings and short/generic messages
log::info!("Filtering out messages that already have embeddings and short messages...");
let min_message_length = 30; // Skip short messages like "Thanks!" or "Yeah, it was :)"
let messages_to_embed: Vec<&crate::ai::SmsMessage> = {
let mut dao = embedding_dao.lock().expect("Unable to lock EmbeddingDao");
messages.iter()
.filter(|msg| {
// Filter out short messages
if msg.body.len() < min_message_length {
return false;
}
// Filter out already embedded messages
!dao.message_exists(&otel_context, contact, &msg.body, msg.timestamp)
.unwrap_or(false)
})
.collect()
};
let skipped = total_messages - messages_to_embed.len();
let to_embed = messages_to_embed.len();
log::info!(
"Found {} messages to embed ({} already embedded)",
to_embed,
skipped
);
if to_embed == 0 {
log::info!("All messages already embedded for contact '{}'", contact);
return Ok(());
}
// Process messages in batches
let batch_size = 128; // Embed 128 messages per API call
let mut successful = 0;
let mut failed = 0;
for (batch_idx, batch) in messages_to_embed.chunks(batch_size).enumerate() {
let batch_start = batch_idx * batch_size;
let batch_end = batch_start + batch.len();
log::info!(
"Processing batch {}/{}: messages {}-{} ({:.1}% complete)",
batch_idx + 1,
(to_embed + batch_size - 1) / batch_size,
batch_start + 1,
batch_end,
(batch_end as f64 / to_embed as f64) * 100.0
);
match embed_message_batch(
batch,
contact,
ollama,
embedding_dao.clone(),
)
.await
{
Ok(count) => {
successful += count;
log::debug!("Successfully embedded {} messages in batch", count);
}
Err(e) => {
failed += batch.len();
log::error!("Failed to embed batch: {:?}", e);
// Continue processing despite failures
}
}
// Small delay between batches to avoid overwhelming Ollama
if batch_end < to_embed {
sleep(Duration::from_millis(500)).await;
}
}
log::info!(
"Message embedding job complete for '{}': {}/{} new embeddings created ({} already embedded, {} failed)",
contact,
successful,
total_messages,
skipped,
failed
);
if failed > 0 {
log::warn!(
"{} messages failed to embed for contact '{}'",
failed,
contact
);
}
Ok(())
}
/// Embed a batch of messages using a single API call
/// Returns the number of successfully embedded messages
async fn embed_message_batch(
messages: &[&crate::ai::SmsMessage],
contact: &str,
ollama: &OllamaClient,
embedding_dao: Arc<Mutex<Box<dyn EmbeddingDao>>>,
) -> Result<usize> {
if messages.is_empty() {
return Ok(0);
}
// Collect message bodies for batch embedding
let bodies: Vec<&str> = messages.iter().map(|m| m.body.as_str()).collect();
// Generate embeddings for all messages in one API call
let embeddings = ollama.generate_embeddings(&bodies).await?;
if embeddings.len() != messages.len() {
return Err(anyhow::anyhow!(
"Embedding count mismatch: got {} embeddings for {} messages",
embeddings.len(),
messages.len()
));
}
// Build batch of insert records
let otel_context = opentelemetry::Context::new();
let created_at = Utc::now().timestamp();
let mut inserts = Vec::with_capacity(messages.len());
for (message, embedding) in messages.iter().zip(embeddings.iter()) {
// Validate embedding dimensions
if embedding.len() != 768 {
log::warn!(
"Invalid embedding dimensions: {} (expected 768), skipping",
embedding.len()
);
continue;
}
inserts.push(InsertMessageEmbedding {
contact: contact.to_string(),
body: message.body.clone(),
timestamp: message.timestamp,
is_sent: message.is_sent,
embedding: embedding.clone(),
created_at,
model_version: "nomic-embed-text:v1.5".to_string(),
});
}
// Store all embeddings in a single transaction
let mut dao = embedding_dao.lock().expect("Unable to lock EmbeddingDao");
let stored_count = dao.store_message_embeddings_batch(&otel_context, inserts)
.map_err(|e| anyhow::anyhow!("Failed to store embeddings batch: {:?}", e))?;
Ok(stored_count)
}

View File

@@ -1,9 +1,12 @@
use actix_web::{HttpResponse, Responder, delete, get, post, web};
use actix_web::{HttpRequest, HttpResponse, Responder, delete, get, post, web};
use opentelemetry::trace::{Span, Status, Tracer};
use opentelemetry::KeyValue;
use serde::{Deserialize, Serialize};
use crate::ai::{InsightGenerator, OllamaClient};
use crate::data::Claims;
use crate::database::InsightDao;
use crate::otel::{extract_context_from_request, global_tracer};
use crate::utils::normalize_path;
#[derive(Debug, Deserialize)]
@@ -45,12 +48,22 @@ pub struct ServerModels {
/// POST /insights/generate - Generate insight for a specific photo
#[post("/insights/generate")]
pub async fn generate_insight_handler(
http_request: HttpRequest,
_claims: Claims,
request: web::Json<GeneratePhotoInsightRequest>,
insight_generator: web::Data<InsightGenerator>,
) -> impl Responder {
let parent_context = extract_context_from_request(&http_request);
let tracer = global_tracer();
let mut span = tracer.start_with_context("http.insights.generate", &parent_context);
let normalized_path = normalize_path(&request.file_path);
span.set_attribute(KeyValue::new("file_path", normalized_path.clone()));
if let Some(ref model) = request.model {
span.set_attribute(KeyValue::new("model", model.clone()));
}
log::info!(
"Manual insight generation triggered for photo: {} with model: {:?}",
normalized_path,
@@ -58,16 +71,21 @@ pub async fn generate_insight_handler(
);
// Generate insight with optional custom model
match insight_generator
let result = insight_generator
.generate_insight_for_photo_with_model(&normalized_path, request.model.clone())
.await
{
Ok(()) => HttpResponse::Ok().json(serde_json::json!({
"success": true,
"message": "Insight generated successfully"
})),
.await;
match result {
Ok(()) => {
span.set_status(Status::Ok);
HttpResponse::Ok().json(serde_json::json!({
"success": true,
"message": "Insight generated successfully"
}))
}
Err(e) => {
log::error!("Failed to generate insight: {:?}", e);
span.set_status(Status::error(e.to_string()));
HttpResponse::InternalServerError().json(serde_json::json!({
"error": format!("Failed to generate insight: {:?}", e)
}))

View File

@@ -1,5 +1,7 @@
use anyhow::Result;
use chrono::{DateTime, Utc};
use opentelemetry::trace::{Span, Status, TraceContextExt, Tracer};
use opentelemetry::KeyValue;
use serde::Deserialize;
use std::fs::File;
use std::sync::{Arc, Mutex};
@@ -7,8 +9,9 @@ use std::sync::{Arc, Mutex};
use crate::ai::ollama::OllamaClient;
use crate::ai::sms_client::SmsApiClient;
use crate::database::models::InsertPhotoInsight;
use crate::database::{ExifDao, InsightDao};
use crate::database::{DailySummaryDao, ExifDao, InsightDao};
use crate::memories::extract_date_from_filename;
use crate::otel::global_tracer;
use crate::utils::normalize_path;
#[derive(Deserialize)]
@@ -31,6 +34,7 @@ pub struct InsightGenerator {
sms_client: SmsApiClient,
insight_dao: Arc<Mutex<Box<dyn InsightDao>>>,
exif_dao: Arc<Mutex<Box<dyn ExifDao>>>,
daily_summary_dao: Arc<Mutex<Box<dyn DailySummaryDao>>>,
base_path: String,
}
@@ -40,6 +44,7 @@ impl InsightGenerator {
sms_client: SmsApiClient,
insight_dao: Arc<Mutex<Box<dyn InsightDao>>>,
exif_dao: Arc<Mutex<Box<dyn ExifDao>>>,
daily_summary_dao: Arc<Mutex<Box<dyn DailySummaryDao>>>,
base_path: String,
) -> Self {
Self {
@@ -47,6 +52,7 @@ impl InsightGenerator {
sms_client,
insight_dao,
exif_dao,
daily_summary_dao,
base_path,
}
}
@@ -72,19 +78,174 @@ impl InsightGenerator {
None
}
/// Find relevant messages using RAG, excluding recent messages (>30 days ago)
/// This prevents RAG from returning messages already in the immediate time window
async fn find_relevant_messages_rag_historical(
&self,
parent_cx: &opentelemetry::Context,
date: chrono::NaiveDate,
location: Option<&str>,
contact: Option<&str>,
limit: usize,
) -> Result<Vec<String>> {
let tracer = global_tracer();
let mut span = tracer.start_with_context("ai.rag.filter_historical", parent_cx);
let filter_cx = parent_cx.with_span(span);
filter_cx.span().set_attribute(KeyValue::new("date", date.to_string()));
filter_cx.span().set_attribute(KeyValue::new("limit", limit as i64));
filter_cx.span().set_attribute(KeyValue::new("exclusion_window_days", 30));
let query_results = self.find_relevant_messages_rag(date, location, contact, limit * 2).await?;
filter_cx.span().set_attribute(KeyValue::new("rag_results_count", query_results.len() as i64));
// Filter out messages from within 30 days of the photo date
let photo_timestamp = date.and_hms_opt(12, 0, 0)
.ok_or_else(|| anyhow::anyhow!("Invalid date"))?
.and_utc()
.timestamp();
let exclusion_window = 30 * 86400; // 30 days in seconds
let historical_only: Vec<String> = query_results
.into_iter()
.filter(|msg| {
// Extract date from formatted daily summary "[2024-08-15] Contact ..."
if let Some(bracket_end) = msg.find(']') {
if let Some(date_str) = msg.get(1..bracket_end) {
// Parse just the date (daily summaries don't have time)
if let Ok(msg_date) = chrono::NaiveDate::parse_from_str(date_str, "%Y-%m-%d") {
let msg_timestamp = msg_date
.and_hms_opt(12, 0, 0)
.unwrap()
.and_utc()
.timestamp();
let time_diff = (photo_timestamp - msg_timestamp).abs();
return time_diff > exclusion_window;
}
}
}
false
})
.take(limit)
.collect();
log::info!(
"Found {} historical messages (>30 days from photo date)",
historical_only.len()
);
filter_cx.span().set_attribute(KeyValue::new("historical_results_count", historical_only.len() as i64));
filter_cx.span().set_status(Status::Ok);
Ok(historical_only)
}
/// Find relevant daily summaries using RAG (semantic search)
/// Returns formatted daily summary strings for LLM context
async fn find_relevant_messages_rag(
&self,
date: chrono::NaiveDate,
location: Option<&str>,
contact: Option<&str>,
limit: usize,
) -> Result<Vec<String>> {
let tracer = global_tracer();
let current_cx = opentelemetry::Context::current();
let mut span = tracer.start_with_context("ai.rag.search_daily_summaries", &current_cx);
span.set_attribute(KeyValue::new("date", date.to_string()));
span.set_attribute(KeyValue::new("limit", limit as i64));
if let Some(loc) = location {
span.set_attribute(KeyValue::new("location", loc.to_string()));
}
if let Some(c) = contact {
span.set_attribute(KeyValue::new("contact", c.to_string()));
}
// Build more detailed query string from photo context
let mut query_parts = Vec::new();
// Add temporal context
query_parts.push(format!("On {}", date.format("%B %d, %Y")));
// Add location if available
if let Some(loc) = location {
query_parts.push(format!("at {}", loc));
}
// Add contact context if available
if let Some(c) = contact {
query_parts.push(format!("conversation with {}", c));
}
// Add day of week for temporal context
let weekday = date.format("%A");
query_parts.push(format!("it was a {}", weekday));
let query = query_parts.join(", ");
span.set_attribute(KeyValue::new("query", query.clone()));
// Create context with this span for child operations
let search_cx = current_cx.with_span(span);
log::info!("========================================");
log::info!("RAG QUERY: {}", query);
log::info!("========================================");
// Generate embedding for the query
let query_embedding = self.ollama.generate_embedding(&query).await?;
// Search for similar daily summaries
let mut summary_dao = self
.daily_summary_dao
.lock()
.expect("Unable to lock DailySummaryDao");
let similar_summaries = summary_dao
.find_similar_summaries(&search_cx, &query_embedding, limit)
.map_err(|e| anyhow::anyhow!("Failed to find similar summaries: {:?}", e))?;
log::info!("Found {} relevant daily summaries via RAG", similar_summaries.len());
search_cx.span().set_attribute(KeyValue::new("results_count", similar_summaries.len() as i64));
// Format daily summaries for LLM context
let formatted = similar_summaries
.into_iter()
.map(|s| {
format!(
"[{}] {} ({} messages):\n{}",
s.date, s.contact, s.message_count, s.summary
)
})
.collect();
search_cx.span().set_status(Status::Ok);
Ok(formatted)
}
/// Generate AI insight for a single photo with optional custom model
pub async fn generate_insight_for_photo_with_model(
&self,
file_path: &str,
custom_model: Option<String>,
) -> Result<()> {
let tracer = global_tracer();
let current_cx = opentelemetry::Context::current();
let mut span = tracer.start_with_context("ai.insight.generate", &current_cx);
// Normalize path to ensure consistent forward slashes in database
let file_path = normalize_path(file_path);
log::info!("Generating insight for photo: {}", file_path);
span.set_attribute(KeyValue::new("file_path", file_path.clone()));
// Create custom Ollama client if model is specified
let ollama_client = if let Some(model) = custom_model {
log::info!("Using custom model: {}", model);
span.set_attribute(KeyValue::new("custom_model", model.clone()));
OllamaClient::new(
self.ollama.primary_url.clone(),
self.ollama.fallback_url.clone(),
@@ -92,15 +253,18 @@ impl InsightGenerator {
Some(model), // Use the same custom model for fallback server
)
} else {
span.set_attribute(KeyValue::new("model", self.ollama.primary_model.clone()));
self.ollama.clone()
};
// Create context with this span for child operations
let insight_cx = current_cx.with_span(span);
// 1. Get EXIF data for the photo
let otel_context = opentelemetry::Context::new();
let exif = {
let mut exif_dao = self.exif_dao.lock().expect("Unable to lock ExifDao");
exif_dao
.get_exif(&otel_context, &file_path)
.get_exif(&insight_cx, &file_path)
.map_err(|e| anyhow::anyhow!("Failed to get EXIF: {:?}", e))?
};
@@ -139,47 +303,20 @@ impl InsightGenerator {
let contact = Self::extract_contact_from_path(&file_path);
log::info!("Extracted contact from path: {:?}", contact);
// 4. Fetch SMS messages for the contact (±1 day)
// Pass the full timestamp for proximity sorting
let sms_messages = self
.sms_client
.fetch_messages_for_contact(contact.as_deref(), timestamp)
.await
.unwrap_or_else(|e| {
log::error!("Failed to fetch SMS messages: {}", e);
Vec::new()
});
insight_cx.span().set_attribute(KeyValue::new("date_taken", date_taken.to_string()));
if let Some(ref c) = contact {
insight_cx.span().set_attribute(KeyValue::new("contact", c.clone()));
}
log::info!(
"Fetched {} SMS messages closest to {}",
sms_messages.len(),
chrono::DateTime::from_timestamp(timestamp, 0)
.map(|dt| dt.format("%Y-%m-%d %H:%M:%S").to_string())
.unwrap_or_else(|| "unknown time".to_string())
);
// 5. Summarize SMS context
let sms_summary = if !sms_messages.is_empty() {
match self
.sms_client
.summarize_context(&sms_messages, &ollama_client)
.await
{
Ok(summary) => Some(summary),
Err(e) => {
log::warn!("Failed to summarize SMS context: {}", e);
None
}
}
} else {
None
};
// 6. Get location name from GPS coordinates
// 4. Get location name from GPS coordinates (needed for RAG query)
let location = match exif {
Some(exif) => {
Some(ref exif) => {
if let (Some(lat), Some(lon)) = (exif.gps_latitude, exif.gps_longitude) {
self.reverse_geocode(lat, lon).await
let loc = self.reverse_geocode(lat, lon).await;
if let Some(ref l) = loc {
insight_cx.span().set_attribute(KeyValue::new("location", l.clone()));
}
loc
} else {
None
}
@@ -187,11 +324,171 @@ impl InsightGenerator {
None => None,
};
// 5. Intelligent retrieval: Hybrid approach for better context
let mut sms_summary = None;
let mut used_rag = false;
// TEMPORARY: Set to true to disable RAG and use only time-based retrieval for testing
let disable_rag_for_testing = false;
// Decide strategy based on available metadata
let has_strong_query = location.is_some();
if disable_rag_for_testing {
log::warn!("RAG DISABLED FOR TESTING - Using only time-based retrieval (±1 day)");
// Skip directly to fallback
} else if has_strong_query {
// Strategy A: Pure RAG (we have location for good semantic matching)
log::info!("Using RAG with location-based query");
match self
.find_relevant_messages_rag(
date_taken,
location.as_deref(),
contact.as_deref(),
20,
)
.await
{
Ok(rag_messages) if !rag_messages.is_empty() => {
used_rag = true;
sms_summary = self.summarize_messages(&rag_messages, &ollama_client).await;
}
Ok(_) => log::info!("RAG returned no messages"),
Err(e) => log::warn!("RAG failed: {}", e),
}
} else {
// Strategy B: Expanded immediate context + historical RAG
log::info!("Using expanded immediate context + historical RAG approach");
// Step 1: Get FULL immediate temporal context (±1 day, ALL messages)
let immediate_messages = self
.sms_client
.fetch_messages_for_contact(contact.as_deref(), timestamp)
.await
.unwrap_or_else(|e| {
log::error!("Failed to fetch immediate messages: {}", e);
Vec::new()
});
log::info!(
"Fetched {} messages from ±1 day window (using ALL for immediate context)",
immediate_messages.len()
);
if !immediate_messages.is_empty() {
// Step 2: Extract topics from immediate messages to enrich RAG query
let topics = self.extract_topics_from_messages(&immediate_messages, &ollama_client).await;
log::info!("Extracted topics for query enrichment: {:?}", topics);
// Step 3: Try historical RAG (>30 days ago)
match self
.find_relevant_messages_rag_historical(
&insight_cx,
date_taken,
None,
contact.as_deref(),
10, // Top 10 historical matches
)
.await
{
Ok(historical_messages) if !historical_messages.is_empty() => {
log::info!(
"Two-context approach: {} immediate (full conversation) + {} historical (similar past moments)",
immediate_messages.len(),
historical_messages.len()
);
used_rag = true;
// Step 4: Summarize contexts separately, then combine
let immediate_summary = self
.summarize_context_from_messages(&immediate_messages, &ollama_client)
.await
.unwrap_or_else(|| String::from("No immediate context"));
let historical_summary = self
.summarize_messages(&historical_messages, &ollama_client)
.await
.unwrap_or_else(|| String::from("No historical context"));
// Combine summaries
sms_summary = Some(format!(
"Immediate context (±1 day): {}\n\nSimilar moments from the past: {}",
immediate_summary, historical_summary
));
}
Ok(_) => {
// RAG found no historical matches, just use immediate context
log::info!("No historical RAG matches, using immediate context only");
sms_summary = self.summarize_context_from_messages(&immediate_messages, &ollama_client).await;
}
Err(e) => {
log::warn!("Historical RAG failed, using immediate context only: {}", e);
sms_summary = self.summarize_context_from_messages(&immediate_messages, &ollama_client).await;
}
}
} else {
log::info!("No immediate messages found, trying basic RAG as fallback");
// Fallback to basic RAG even without strong query
match self
.find_relevant_messages_rag(date_taken, None, contact.as_deref(), 20)
.await
{
Ok(rag_messages) if !rag_messages.is_empty() => {
used_rag = true;
sms_summary = self.summarize_messages(&rag_messages, &ollama_client).await;
}
_ => {}
}
}
}
// 6. Fallback to traditional time-based message retrieval if RAG didn't work
if !used_rag {
log::info!("Using traditional time-based message retrieval (±1 day)");
let sms_messages = self
.sms_client
.fetch_messages_for_contact(contact.as_deref(), timestamp)
.await
.unwrap_or_else(|e| {
log::error!("Failed to fetch SMS messages: {}", e);
Vec::new()
});
log::info!(
"Fetched {} SMS messages closest to {}",
sms_messages.len(),
chrono::DateTime::from_timestamp(timestamp, 0)
.map(|dt| dt.format("%Y-%m-%d %H:%M:%S").to_string())
.unwrap_or_else(|| "unknown time".to_string())
);
// Summarize time-based messages
if !sms_messages.is_empty() {
match self
.sms_client
.summarize_context(&sms_messages, &ollama_client)
.await
{
Ok(summary) => {
sms_summary = Some(summary);
}
Err(e) => {
log::warn!("Failed to summarize SMS context: {}", e);
}
}
}
}
let retrieval_method = if used_rag { "RAG" } else { "time-based" };
insight_cx.span().set_attribute(KeyValue::new("retrieval_method", retrieval_method));
insight_cx.span().set_attribute(KeyValue::new("has_sms_context", sms_summary.is_some()));
log::info!(
"Photo context: date={}, location={:?}, sms_messages={}",
"Photo context: date={}, location={:?}, retrieval_method={}",
date_taken,
location,
sms_messages.len()
retrieval_method
);
// 7. Generate title and summary with Ollama
@@ -206,6 +503,9 @@ impl InsightGenerator {
log::info!("Generated title: {}", title);
log::info!("Generated summary: {}", summary);
insight_cx.span().set_attribute(KeyValue::new("title_length", title.len() as i64));
insight_cx.span().set_attribute(KeyValue::new("summary_length", summary.len() as i64));
// 8. Store in database
let insight = InsertPhotoInsight {
file_path: file_path.to_string(),
@@ -216,13 +516,210 @@ impl InsightGenerator {
};
let mut dao = self.insight_dao.lock().expect("Unable to lock InsightDao");
dao.store_insight(&otel_context, insight)
.map_err(|e| anyhow::anyhow!("Failed to store insight: {:?}", e))?;
let result = dao.store_insight(&insight_cx, insight)
.map_err(|e| anyhow::anyhow!("Failed to store insight: {:?}", e));
log::info!("Successfully stored insight for {}", file_path);
match &result {
Ok(_) => {
log::info!("Successfully stored insight for {}", file_path);
insight_cx.span().set_status(Status::Ok);
}
Err(e) => {
log::error!("Failed to store insight: {:?}", e);
insight_cx.span().set_status(Status::error(e.to_string()));
}
}
result?;
Ok(())
}
/// Extract key topics/entities from messages using LLM for query enrichment
async fn extract_topics_from_messages(
&self,
messages: &[crate::ai::SmsMessage],
ollama: &OllamaClient,
) -> Vec<String> {
if messages.is_empty() {
return Vec::new();
}
// Format a sample of messages for topic extraction
let sample_size = messages.len().min(20);
let sample_text: Vec<String> = messages
.iter()
.take(sample_size)
.map(|m| format!("{}: {}", if m.is_sent { "Me" } else { &m.contact }, m.body))
.collect();
let prompt = format!(
r#"Extract important entities from these messages that provide context about what was happening. Focus on:
1. **People**: Names of specific people mentioned (first names, nicknames)
2. **Places**: Locations, cities, buildings, workplaces, parks, restaurants, venues
3. **Activities**: Specific events, hobbies, groups, organizations (e.g., "drum corps", "auditions")
4. **Unique terms**: Domain-specific words or phrases that might need explanation (e.g., "Hyland", "Vanguard", "DCI")
Messages:
{}
Return a comma-separated list of 3-7 specific entities (people, places, activities, unique terms).
Focus on proper nouns and specific terms that provide context.
Return ONLY the comma-separated list, nothing else."#,
sample_text.join("\n")
);
match ollama
.generate(&prompt, Some("You are an entity extraction assistant. Extract proper nouns, people, places, and domain-specific terms that provide context."))
.await
{
Ok(response) => {
// Parse comma-separated topics
response
.split(',')
.map(|s| s.trim().to_string())
.filter(|s| !s.is_empty() && s.len() > 1) // Filter out single chars
.take(7) // Increased from 5 to 7
.collect()
}
Err(e) => {
log::warn!("Failed to extract topics from messages: {}", e);
Vec::new()
}
}
}
/// Find relevant messages using RAG with topic-enriched query
async fn find_relevant_messages_rag_enriched(
&self,
date: chrono::NaiveDate,
contact: Option<&str>,
topics: &[String],
limit: usize,
) -> Result<Vec<String>> {
// Build enriched query from date + topics
let mut query_parts = Vec::new();
query_parts.push(format!("On {}", date.format("%B %d, %Y")));
if !topics.is_empty() {
query_parts.push(format!("about {}", topics.join(", ")));
}
if let Some(c) = contact {
query_parts.push(format!("conversation with {}", c));
}
// Add day of week
let weekday = date.format("%A");
query_parts.push(format!("it was a {}", weekday));
let query = query_parts.join(", ");
log::info!("========================================");
log::info!("ENRICHED RAG QUERY: {}", query);
log::info!("Extracted topics: {:?}", topics);
log::info!("========================================");
// Use existing RAG method with enriched query
self.find_relevant_messages_rag(date, None, contact, limit)
.await
}
/// Summarize pre-formatted message strings using LLM (concise version for historical context)
async fn summarize_messages(
&self,
messages: &[String],
ollama: &OllamaClient,
) -> Option<String> {
if messages.is_empty() {
return None;
}
let messages_text = messages.join("\n");
let prompt = format!(
r#"Summarize the context from these messages in 2-3 sentences. Focus on activities, locations, events, and relationships mentioned.
Messages:
{}
Return ONLY the summary, nothing else."#,
messages_text
);
match ollama
.generate(
&prompt,
Some("You are a context summarization assistant. Be concise and factual."),
)
.await
{
Ok(summary) => Some(summary),
Err(e) => {
log::warn!("Failed to summarize messages: {}", e);
None
}
}
}
/// Convert SmsMessage objects to formatted strings and summarize with more detail
/// This is used for immediate context (±1 day) to preserve conversation details
async fn summarize_context_from_messages(
&self,
messages: &[crate::ai::SmsMessage],
ollama: &OllamaClient,
) -> Option<String> {
if messages.is_empty() {
return None;
}
// Format messages
let formatted: Vec<String> = messages
.iter()
.map(|m| {
let sender = if m.is_sent { "Me" } else { &m.contact };
let timestamp = chrono::DateTime::from_timestamp(m.timestamp, 0)
.map(|dt| dt.format("%Y-%m-%d %H:%M").to_string())
.unwrap_or_else(|| "unknown time".to_string());
format!("[{}] {}: {}", timestamp, sender, m.body)
})
.collect();
let messages_text = formatted.join("\n");
// Use a more detailed prompt for immediate context
let prompt = format!(
r#"Provide a detailed summary of the conversation context from these messages. Include:
- Key activities, events, and plans discussed
- Important locations or places mentioned
- Emotional tone and relationship dynamics
- Any significant details that provide context about what was happening
Be thorough but organized. Use 1-2 paragraphs.
Messages:
{}
Return ONLY the summary, nothing else."#,
messages_text
);
match ollama
.generate(
&prompt,
Some("You are a context summarization assistant. Be detailed and factual, preserving important context."),
)
.await
{
Ok(summary) => Some(summary),
Err(e) => {
log::warn!("Failed to summarize immediate context: {}", e);
None
}
}
}
/// Reverse geocode GPS coordinates to human-readable place names
async fn reverse_geocode(&self, lat: f64, lon: f64) -> Option<String> {
let url = format!(

View File

@@ -1,12 +1,16 @@
pub mod embedding_job;
pub mod daily_summary_job;
pub mod handlers;
pub mod insight_generator;
pub mod ollama;
pub mod sms_client;
pub use embedding_job::embed_contact_messages;
pub use daily_summary_job::generate_daily_summaries;
pub use handlers::{
delete_insight_handler, generate_insight_handler, get_all_insights_handler,
get_available_models_handler, get_insight_handler,
};
pub use insight_generator::InsightGenerator;
pub use ollama::OllamaClient;
pub use sms_client::SmsApiClient;
pub use sms_client::{SmsApiClient, SmsMessage};

View File

@@ -226,7 +226,7 @@ Return ONLY the title, nothing else."#,
let sms_str = sms_summary.unwrap_or("No messages");
let prompt = format!(
r#"Write a brief 1-2 paragraph description of this moment based on the available information:
r#"Write a 1-3 paragraph description of this moment based on the available information:
Date: {}
Location: {}
@@ -238,10 +238,139 @@ Use only the specific details provided above. Mention people's names, places, or
sms_str
);
let system = "You are a memory refreshing assistant. Use only the information provided. Do not invent details. Help me remember this day.";
let system = "You are a memory refreshing assistant who is able to provide insights through analyzing past conversations. Use only the information provided. Do not invent details.";
self.generate(&prompt, Some(system)).await
}
/// Generate an embedding vector for text using nomic-embed-text:v1.5
/// Returns a 768-dimensional vector as Vec<f32>
pub async fn generate_embedding(&self, text: &str) -> Result<Vec<f32>> {
let embeddings = self.generate_embeddings(&[text]).await?;
embeddings.into_iter().next()
.ok_or_else(|| anyhow::anyhow!("No embedding returned"))
}
/// Generate embeddings for multiple texts in a single API call (batch mode)
/// Returns a vector of 768-dimensional vectors
/// This is much more efficient than calling generate_embedding multiple times
pub async fn generate_embeddings(&self, texts: &[&str]) -> Result<Vec<Vec<f32>>> {
let embedding_model = "nomic-embed-text:v1.5";
log::debug!("=== Ollama Batch Embedding Request ===");
log::debug!("Model: {}", embedding_model);
log::debug!("Batch size: {} texts", texts.len());
log::debug!("======================================");
// Try primary server first
log::debug!(
"Attempting to generate {} embeddings with primary server: {} (model: {})",
texts.len(),
self.primary_url,
embedding_model
);
let primary_result = self
.try_generate_embeddings(&self.primary_url, embedding_model, texts)
.await;
let embeddings = match primary_result {
Ok(embeddings) => {
log::debug!("Successfully generated {} embeddings from primary server", embeddings.len());
embeddings
}
Err(e) => {
log::warn!("Primary server batch embedding failed: {}", e);
// Try fallback server if available
if let Some(fallback_url) = &self.fallback_url {
log::info!(
"Attempting to generate {} embeddings with fallback server: {} (model: {})",
texts.len(),
fallback_url,
embedding_model
);
match self
.try_generate_embeddings(fallback_url, embedding_model, texts)
.await
{
Ok(embeddings) => {
log::info!("Successfully generated {} embeddings from fallback server", embeddings.len());
embeddings
}
Err(fallback_e) => {
log::error!("Fallback server batch embedding also failed: {}", fallback_e);
return Err(anyhow::anyhow!(
"Both primary and fallback servers failed. Primary: {}, Fallback: {}",
e,
fallback_e
));
}
}
} else {
log::error!("No fallback server configured");
return Err(e);
}
}
};
// Validate embedding dimensions (should be 768 for nomic-embed-text:v1.5)
for (i, embedding) in embeddings.iter().enumerate() {
if embedding.len() != 768 {
log::warn!(
"Unexpected embedding dimensions for item {}: {} (expected 768)",
i,
embedding.len()
);
}
}
Ok(embeddings)
}
/// Internal helper to try generating an embedding from a specific server
async fn try_generate_embedding(
&self,
url: &str,
model: &str,
text: &str,
) -> Result<Vec<f32>> {
let embeddings = self.try_generate_embeddings(url, model, &[text]).await?;
embeddings.into_iter().next()
.ok_or_else(|| anyhow::anyhow!("No embedding returned from Ollama"))
}
/// Internal helper to try generating embeddings for multiple texts from a specific server
async fn try_generate_embeddings(
&self,
url: &str,
model: &str,
texts: &[&str],
) -> Result<Vec<Vec<f32>>> {
let request = OllamaBatchEmbedRequest {
model: model.to_string(),
input: texts.iter().map(|s| s.to_string()).collect(),
};
let response = self
.client
.post(&format!("{}/api/embed", url))
.json(&request)
.send()
.await?;
if !response.status().is_success() {
let status = response.status();
let error_body = response.text().await.unwrap_or_default();
return Err(anyhow::anyhow!(
"Ollama batch embedding request failed: {} - {}",
status,
error_body
));
}
let result: OllamaEmbedResponse = response.json().await?;
Ok(result.embeddings)
}
}
#[derive(Serialize)]
@@ -267,3 +396,20 @@ struct OllamaTagsResponse {
struct OllamaModel {
name: String,
}
#[derive(Serialize)]
struct OllamaEmbedRequest {
model: String,
input: String,
}
#[derive(Serialize)]
struct OllamaBatchEmbedRequest {
model: String,
input: Vec<String>,
}
#[derive(Deserialize)]
struct OllamaEmbedResponse {
embeddings: Vec<Vec<f32>>,
}

View File

@@ -91,6 +91,118 @@ impl SmsApiClient {
.await
}
/// Fetch all messages for a specific contact across all time
/// Used for embedding generation - retrieves complete message history
/// Handles pagination automatically if the API returns a limited number of results
pub async fn fetch_all_messages_for_contact(&self, contact: &str) -> Result<Vec<SmsMessage>> {
let start_ts = chrono::DateTime::parse_from_rfc3339("2000-01-01T00:00:00Z")
.unwrap()
.timestamp();
let end_ts = chrono::Utc::now().timestamp();
log::info!(
"Fetching all historical messages for contact: {}",
contact
);
let mut all_messages = Vec::new();
let mut offset = 0;
let limit = 1000; // Fetch in batches of 1000
loop {
log::debug!("Fetching batch at offset {} for contact {}", offset, contact);
let batch = self.fetch_messages_paginated(
start_ts,
end_ts,
Some(contact),
None,
limit,
offset
).await?;
let batch_size = batch.len();
all_messages.extend(batch);
log::debug!("Fetched {} messages (total so far: {})", batch_size, all_messages.len());
// If we got fewer messages than the limit, we've reached the end
if batch_size < limit {
break;
}
offset += limit;
}
log::info!(
"Fetched {} total messages for contact {}",
all_messages.len(),
contact
);
Ok(all_messages)
}
/// Internal method to fetch messages with pagination support
async fn fetch_messages_paginated(
&self,
start_ts: i64,
end_ts: i64,
contact: Option<&str>,
center_timestamp: Option<i64>,
limit: usize,
offset: usize,
) -> Result<Vec<SmsMessage>> {
let mut url = format!(
"{}/api/messages/by-date-range/?start_date={}&end_date={}&limit={}&offset={}",
self.base_url, start_ts, end_ts, limit, offset
);
if let Some(contact_name) = contact {
url.push_str(&format!("&contact={}", urlencoding::encode(contact_name)));
}
if let Some(ts) = center_timestamp {
url.push_str(&format!("&timestamp={}", ts));
}
log::debug!("Fetching SMS messages from: {}", url);
let mut request = self.client.get(&url);
if let Some(token) = &self.token {
request = request.header("Authorization", format!("Bearer {}", token));
}
let response = request.send().await?;
log::debug!("SMS API response status: {}", response.status());
if !response.status().is_success() {
let status = response.status();
let error_body = response.text().await.unwrap_or_default();
log::error!("SMS API request failed: {} - {}", status, error_body);
return Err(anyhow::anyhow!(
"SMS API request failed: {} - {}",
status,
error_body
));
}
let data: SmsApiResponse = response.json().await?;
Ok(data
.messages
.into_iter()
.map(|m| SmsMessage {
contact: m.contact_name,
body: m.body,
timestamp: m.date,
is_sent: m.type_ == 2,
})
.collect())
}
/// Internal method to fetch messages with optional contact filter and timestamp sorting
async fn fetch_messages(
&self,

View File

@@ -0,0 +1,338 @@
use diesel::prelude::*;
use diesel::sqlite::SqliteConnection;
use serde::Serialize;
use std::ops::DerefMut;
use std::sync::{Arc, Mutex};
use crate::database::{connect, DbError, DbErrorKind};
use crate::otel::trace_db_call;
/// Represents a daily conversation summary
#[derive(Serialize, Clone, Debug)]
pub struct DailySummary {
pub id: i32,
pub date: String,
pub contact: String,
pub summary: String,
pub message_count: i32,
pub created_at: i64,
pub model_version: String,
}
/// Data for inserting a new daily summary
#[derive(Clone, Debug)]
pub struct InsertDailySummary {
pub date: String,
pub contact: String,
pub summary: String,
pub message_count: i32,
pub embedding: Vec<f32>,
pub created_at: i64,
pub model_version: String,
}
pub trait DailySummaryDao: Sync + Send {
/// Store a daily summary with its embedding
fn store_summary(
&mut self,
context: &opentelemetry::Context,
summary: InsertDailySummary,
) -> Result<DailySummary, DbError>;
/// Find semantically similar daily summaries using vector similarity
fn find_similar_summaries(
&mut self,
context: &opentelemetry::Context,
query_embedding: &[f32],
limit: usize,
) -> Result<Vec<DailySummary>, DbError>;
/// Check if a summary exists for a given date and contact
fn summary_exists(
&mut self,
context: &opentelemetry::Context,
date: &str,
contact: &str,
) -> Result<bool, DbError>;
/// Get count of summaries for a contact
fn get_summary_count(
&mut self,
context: &opentelemetry::Context,
contact: &str,
) -> Result<i64, DbError>;
}
pub struct SqliteDailySummaryDao {
connection: Arc<Mutex<SqliteConnection>>,
}
impl Default for SqliteDailySummaryDao {
fn default() -> Self {
Self::new()
}
}
impl SqliteDailySummaryDao {
pub fn new() -> Self {
SqliteDailySummaryDao {
connection: Arc::new(Mutex::new(connect())),
}
}
fn serialize_vector(vec: &[f32]) -> Vec<u8> {
use zerocopy::IntoBytes;
vec.as_bytes().to_vec()
}
fn deserialize_vector(bytes: &[u8]) -> Result<Vec<f32>, DbError> {
if bytes.len() % 4 != 0 {
return Err(DbError::new(DbErrorKind::QueryError));
}
let count = bytes.len() / 4;
let mut vec = Vec::with_capacity(count);
for chunk in bytes.chunks_exact(4) {
let float = f32::from_le_bytes([chunk[0], chunk[1], chunk[2], chunk[3]]);
vec.push(float);
}
Ok(vec)
}
fn cosine_similarity(a: &[f32], b: &[f32]) -> f32 {
if a.len() != b.len() {
return 0.0;
}
let dot_product: f32 = a.iter().zip(b.iter()).map(|(x, y)| x * y).sum();
let magnitude_a: f32 = a.iter().map(|x| x * x).sum::<f32>().sqrt();
let magnitude_b: f32 = b.iter().map(|x| x * x).sum::<f32>().sqrt();
if magnitude_a == 0.0 || magnitude_b == 0.0 {
return 0.0;
}
dot_product / (magnitude_a * magnitude_b)
}
}
impl DailySummaryDao for SqliteDailySummaryDao {
fn store_summary(
&mut self,
context: &opentelemetry::Context,
summary: InsertDailySummary,
) -> Result<DailySummary, DbError> {
trace_db_call(context, "insert", "store_summary", |_span| {
let mut conn = self.connection.lock().expect("Unable to get DailySummaryDao");
// Validate embedding dimensions
if summary.embedding.len() != 768 {
return Err(anyhow::anyhow!(
"Invalid embedding dimensions: {} (expected 768)",
summary.embedding.len()
));
}
let embedding_bytes = Self::serialize_vector(&summary.embedding);
// INSERT OR REPLACE to handle updates if summary needs regeneration
diesel::sql_query(
"INSERT OR REPLACE INTO daily_conversation_summaries
(date, contact, summary, message_count, embedding, created_at, model_version)
VALUES (?1, ?2, ?3, ?4, ?5, ?6, ?7)"
)
.bind::<diesel::sql_types::Text, _>(&summary.date)
.bind::<diesel::sql_types::Text, _>(&summary.contact)
.bind::<diesel::sql_types::Text, _>(&summary.summary)
.bind::<diesel::sql_types::Integer, _>(summary.message_count)
.bind::<diesel::sql_types::Binary, _>(&embedding_bytes)
.bind::<diesel::sql_types::BigInt, _>(summary.created_at)
.bind::<diesel::sql_types::Text, _>(&summary.model_version)
.execute(conn.deref_mut())
.map_err(|e| anyhow::anyhow!("Insert error: {:?}", e))?;
let row_id: i32 = diesel::sql_query("SELECT last_insert_rowid() as id")
.get_result::<LastInsertRowId>(conn.deref_mut())
.map(|r| r.id as i32)
.map_err(|e| anyhow::anyhow!("Failed to get last insert ID: {:?}", e))?;
Ok(DailySummary {
id: row_id,
date: summary.date,
contact: summary.contact,
summary: summary.summary,
message_count: summary.message_count,
created_at: summary.created_at,
model_version: summary.model_version,
})
})
.map_err(|_| DbError::new(DbErrorKind::InsertError))
}
fn find_similar_summaries(
&mut self,
context: &opentelemetry::Context,
query_embedding: &[f32],
limit: usize,
) -> Result<Vec<DailySummary>, DbError> {
trace_db_call(context, "query", "find_similar_summaries", |_span| {
let mut conn = self.connection.lock().expect("Unable to get DailySummaryDao");
if query_embedding.len() != 768 {
return Err(anyhow::anyhow!(
"Invalid query embedding dimensions: {} (expected 768)",
query_embedding.len()
));
}
// Load all summaries with embeddings
let results = diesel::sql_query(
"SELECT id, date, contact, summary, message_count, embedding, created_at, model_version
FROM daily_conversation_summaries"
)
.load::<DailySummaryWithVectorRow>(conn.deref_mut())
.map_err(|e| anyhow::anyhow!("Query error: {:?}", e))?;
log::info!("Loaded {} daily summaries for similarity comparison", results.len());
// Compute similarity for each summary
let mut scored_summaries: Vec<(f32, DailySummary)> = results
.into_iter()
.filter_map(|row| {
match Self::deserialize_vector(&row.embedding) {
Ok(embedding) => {
let similarity = Self::cosine_similarity(query_embedding, &embedding);
Some((
similarity,
DailySummary {
id: row.id,
date: row.date,
contact: row.contact,
summary: row.summary,
message_count: row.message_count,
created_at: row.created_at,
model_version: row.model_version,
},
))
}
Err(e) => {
log::warn!("Failed to deserialize embedding for summary {}: {:?}", row.id, e);
None
}
}
})
.collect();
// Sort by similarity (highest first)
scored_summaries.sort_by(|a, b| b.0.partial_cmp(&a.0).unwrap_or(std::cmp::Ordering::Equal));
// Log similarity distribution
if !scored_summaries.is_empty() {
log::info!(
"Daily summary similarity - Top: {:.3}, Median: {:.3}, Count: {}",
scored_summaries.first().map(|(s, _)| *s).unwrap_or(0.0),
scored_summaries.get(scored_summaries.len() / 2).map(|(s, _)| *s).unwrap_or(0.0),
scored_summaries.len()
);
}
// Take top N and log matches
let top_results: Vec<DailySummary> = scored_summaries
.into_iter()
.take(limit)
.map(|(similarity, summary)| {
log::info!(
"Summary match: similarity={:.3}, date={}, contact={}, summary=\"{}\"",
similarity,
summary.date,
summary.contact,
summary.summary.chars().take(100).collect::<String>()
);
summary
})
.collect();
Ok(top_results)
})
.map_err(|_| DbError::new(DbErrorKind::QueryError))
}
fn summary_exists(
&mut self,
context: &opentelemetry::Context,
date: &str,
contact: &str,
) -> Result<bool, DbError> {
trace_db_call(context, "query", "summary_exists", |_span| {
let mut conn = self.connection.lock().expect("Unable to get DailySummaryDao");
let count = diesel::sql_query(
"SELECT COUNT(*) as count FROM daily_conversation_summaries
WHERE date = ?1 AND contact = ?2"
)
.bind::<diesel::sql_types::Text, _>(date)
.bind::<diesel::sql_types::Text, _>(contact)
.get_result::<CountResult>(conn.deref_mut())
.map(|r| r.count)
.map_err(|e| anyhow::anyhow!("Count query error: {:?}", e))?;
Ok(count > 0)
})
.map_err(|_| DbError::new(DbErrorKind::QueryError))
}
fn get_summary_count(
&mut self,
context: &opentelemetry::Context,
contact: &str,
) -> Result<i64, DbError> {
trace_db_call(context, "query", "get_summary_count", |_span| {
let mut conn = self.connection.lock().expect("Unable to get DailySummaryDao");
diesel::sql_query(
"SELECT COUNT(*) as count FROM daily_conversation_summaries WHERE contact = ?1"
)
.bind::<diesel::sql_types::Text, _>(contact)
.get_result::<CountResult>(conn.deref_mut())
.map(|r| r.count)
.map_err(|e| anyhow::anyhow!("Count query error: {:?}", e).into())
})
.map_err(|_| DbError::new(DbErrorKind::QueryError))
}
}
// Helper structs for raw SQL queries
#[derive(QueryableByName)]
struct LastInsertRowId {
#[diesel(sql_type = diesel::sql_types::BigInt)]
id: i64,
}
#[derive(QueryableByName)]
struct DailySummaryWithVectorRow {
#[diesel(sql_type = diesel::sql_types::Integer)]
id: i32,
#[diesel(sql_type = diesel::sql_types::Text)]
date: String,
#[diesel(sql_type = diesel::sql_types::Text)]
contact: String,
#[diesel(sql_type = diesel::sql_types::Text)]
summary: String,
#[diesel(sql_type = diesel::sql_types::Integer)]
message_count: i32,
#[diesel(sql_type = diesel::sql_types::Binary)]
embedding: Vec<u8>,
#[diesel(sql_type = diesel::sql_types::BigInt)]
created_at: i64,
#[diesel(sql_type = diesel::sql_types::Text)]
model_version: String,
}
#[derive(QueryableByName)]
struct CountResult {
#[diesel(sql_type = diesel::sql_types::BigInt)]
count: i64,
}

View File

@@ -0,0 +1,569 @@
use diesel::prelude::*;
use diesel::sqlite::SqliteConnection;
use serde::Serialize;
use std::ops::DerefMut;
use std::sync::{Arc, Mutex};
use crate::database::{DbError, DbErrorKind, connect};
use crate::otel::trace_db_call;
/// Represents a stored message embedding
#[derive(Serialize, Clone, Debug)]
pub struct MessageEmbedding {
pub id: i32,
pub contact: String,
pub body: String,
pub timestamp: i64,
pub is_sent: bool,
pub created_at: i64,
pub model_version: String,
}
/// Data for inserting a new message embedding
#[derive(Clone, Debug)]
pub struct InsertMessageEmbedding {
pub contact: String,
pub body: String,
pub timestamp: i64,
pub is_sent: bool,
pub embedding: Vec<f32>,
pub created_at: i64,
pub model_version: String,
}
pub trait EmbeddingDao: Sync + Send {
/// Store a message with its embedding vector
fn store_message_embedding(
&mut self,
context: &opentelemetry::Context,
message: InsertMessageEmbedding,
) -> Result<MessageEmbedding, DbError>;
/// Store multiple messages with embeddings in a single transaction
/// Returns the number of successfully stored messages
fn store_message_embeddings_batch(
&mut self,
context: &opentelemetry::Context,
messages: Vec<InsertMessageEmbedding>,
) -> Result<usize, DbError>;
/// Find semantically similar messages using vector similarity search
/// Returns the top `limit` most similar messages
/// If contact_filter is provided, only return messages from that contact
/// Otherwise, search across all contacts for cross-perspective context
fn find_similar_messages(
&mut self,
context: &opentelemetry::Context,
query_embedding: &[f32],
limit: usize,
contact_filter: Option<&str>,
) -> Result<Vec<MessageEmbedding>, DbError>;
/// Get the count of embedded messages for a specific contact
fn get_message_count(
&mut self,
context: &opentelemetry::Context,
contact: &str,
) -> Result<i64, DbError>;
/// Check if embeddings exist for a contact (idempotency check)
fn has_embeddings_for_contact(
&mut self,
context: &opentelemetry::Context,
contact: &str,
) -> Result<bool, DbError>;
/// Check if a specific message already has an embedding
fn message_exists(
&mut self,
context: &opentelemetry::Context,
contact: &str,
body: &str,
timestamp: i64,
) -> Result<bool, DbError>;
}
pub struct SqliteEmbeddingDao {
connection: Arc<Mutex<SqliteConnection>>,
}
impl Default for SqliteEmbeddingDao {
fn default() -> Self {
Self::new()
}
}
impl SqliteEmbeddingDao {
pub fn new() -> Self {
SqliteEmbeddingDao {
connection: Arc::new(Mutex::new(connect())),
}
}
/// Serialize f32 vector to bytes for BLOB storage
fn serialize_vector(vec: &[f32]) -> Vec<u8> {
// Convert f32 slice to bytes using zerocopy
use zerocopy::IntoBytes;
vec.as_bytes().to_vec()
}
/// Deserialize bytes from BLOB back to f32 vector
fn deserialize_vector(bytes: &[u8]) -> Result<Vec<f32>, DbError> {
if bytes.len() % 4 != 0 {
return Err(DbError::new(DbErrorKind::QueryError));
}
let count = bytes.len() / 4;
let mut vec = Vec::with_capacity(count);
for chunk in bytes.chunks_exact(4) {
let float = f32::from_le_bytes([chunk[0], chunk[1], chunk[2], chunk[3]]);
vec.push(float);
}
Ok(vec)
}
/// Compute cosine similarity between two vectors
fn cosine_similarity(a: &[f32], b: &[f32]) -> f32 {
if a.len() != b.len() {
return 0.0;
}
let dot_product: f32 = a.iter().zip(b.iter()).map(|(x, y)| x * y).sum();
let magnitude_a: f32 = a.iter().map(|x| x * x).sum::<f32>().sqrt();
let magnitude_b: f32 = b.iter().map(|x| x * x).sum::<f32>().sqrt();
if magnitude_a == 0.0 || magnitude_b == 0.0 {
return 0.0;
}
dot_product / (magnitude_a * magnitude_b)
}
}
impl EmbeddingDao for SqliteEmbeddingDao {
fn store_message_embedding(
&mut self,
context: &opentelemetry::Context,
message: InsertMessageEmbedding,
) -> Result<MessageEmbedding, DbError> {
trace_db_call(context, "insert", "store_message_embedding", |_span| {
let mut conn = self.connection.lock().expect("Unable to get EmbeddingDao");
// Validate embedding dimensions
if message.embedding.len() != 768 {
return Err(anyhow::anyhow!(
"Invalid embedding dimensions: {} (expected 768)",
message.embedding.len()
));
}
// Serialize embedding to bytes
let embedding_bytes = Self::serialize_vector(&message.embedding);
// Insert into message_embeddings table with BLOB
// Use INSERT OR IGNORE to skip duplicates (based on UNIQUE constraint)
let insert_result = diesel::sql_query(
"INSERT OR IGNORE INTO message_embeddings (contact, body, timestamp, is_sent, embedding, created_at, model_version)
VALUES (?1, ?2, ?3, ?4, ?5, ?6, ?7)"
)
.bind::<diesel::sql_types::Text, _>(&message.contact)
.bind::<diesel::sql_types::Text, _>(&message.body)
.bind::<diesel::sql_types::BigInt, _>(message.timestamp)
.bind::<diesel::sql_types::Bool, _>(message.is_sent)
.bind::<diesel::sql_types::Binary, _>(&embedding_bytes)
.bind::<diesel::sql_types::BigInt, _>(message.created_at)
.bind::<diesel::sql_types::Text, _>(&message.model_version)
.execute(conn.deref_mut())
.map_err(|e| anyhow::anyhow!("Insert error: {:?}", e))?;
// If INSERT OR IGNORE skipped (duplicate), find the existing record
let row_id: i32 = if insert_result == 0 {
// Duplicate - find the existing record
diesel::sql_query(
"SELECT id FROM message_embeddings WHERE contact = ?1 AND body = ?2 AND timestamp = ?3"
)
.bind::<diesel::sql_types::Text, _>(&message.contact)
.bind::<diesel::sql_types::Text, _>(&message.body)
.bind::<diesel::sql_types::BigInt, _>(message.timestamp)
.get_result::<LastInsertRowId>(conn.deref_mut())
.map(|r| r.id as i32)
.map_err(|e| anyhow::anyhow!("Failed to find existing record: {:?}", e))?
} else {
// New insert - get the last inserted row ID
diesel::sql_query("SELECT last_insert_rowid() as id")
.get_result::<LastInsertRowId>(conn.deref_mut())
.map(|r| r.id as i32)
.map_err(|e| anyhow::anyhow!("Failed to get last insert ID: {:?}", e))?
};
// Return the stored message
Ok(MessageEmbedding {
id: row_id,
contact: message.contact,
body: message.body,
timestamp: message.timestamp,
is_sent: message.is_sent,
created_at: message.created_at,
model_version: message.model_version,
})
})
.map_err(|_| DbError::new(DbErrorKind::InsertError))
}
fn store_message_embeddings_batch(
&mut self,
context: &opentelemetry::Context,
messages: Vec<InsertMessageEmbedding>,
) -> Result<usize, DbError> {
trace_db_call(context, "insert", "store_message_embeddings_batch", |_span| {
let mut conn = self.connection.lock().expect("Unable to get EmbeddingDao");
// Start transaction
conn.transaction::<_, anyhow::Error, _>(|conn| {
let mut stored_count = 0;
for message in messages {
// Validate embedding dimensions
if message.embedding.len() != 768 {
log::warn!(
"Invalid embedding dimensions: {} (expected 768), skipping",
message.embedding.len()
);
continue;
}
// Serialize embedding to bytes
let embedding_bytes = Self::serialize_vector(&message.embedding);
// Insert into message_embeddings table with BLOB
// Use INSERT OR IGNORE to skip duplicates (based on UNIQUE constraint)
match diesel::sql_query(
"INSERT OR IGNORE INTO message_embeddings (contact, body, timestamp, is_sent, embedding, created_at, model_version)
VALUES (?1, ?2, ?3, ?4, ?5, ?6, ?7)"
)
.bind::<diesel::sql_types::Text, _>(&message.contact)
.bind::<diesel::sql_types::Text, _>(&message.body)
.bind::<diesel::sql_types::BigInt, _>(message.timestamp)
.bind::<diesel::sql_types::Bool, _>(message.is_sent)
.bind::<diesel::sql_types::Binary, _>(&embedding_bytes)
.bind::<diesel::sql_types::BigInt, _>(message.created_at)
.bind::<diesel::sql_types::Text, _>(&message.model_version)
.execute(conn)
{
Ok(rows) if rows > 0 => stored_count += 1,
Ok(_) => {
// INSERT OR IGNORE skipped (duplicate)
log::debug!("Skipped duplicate message: {:?}", message.body.chars().take(50).collect::<String>());
}
Err(e) => {
log::warn!("Failed to insert message in batch: {:?}", e);
// Continue with other messages instead of failing entire batch
}
}
}
Ok(stored_count)
})
.map_err(|e| anyhow::anyhow!("Transaction error: {:?}", e))
})
.map_err(|_| DbError::new(DbErrorKind::InsertError))
}
fn find_similar_messages(
&mut self,
context: &opentelemetry::Context,
query_embedding: &[f32],
limit: usize,
contact_filter: Option<&str>,
) -> Result<Vec<MessageEmbedding>, DbError> {
trace_db_call(context, "query", "find_similar_messages", |_span| {
let mut conn = self.connection.lock().expect("Unable to get EmbeddingDao");
// Validate embedding dimensions
if query_embedding.len() != 768 {
return Err(anyhow::anyhow!(
"Invalid query embedding dimensions: {} (expected 768)",
query_embedding.len()
));
}
// Load messages with optional contact filter
let results = if let Some(contact) = contact_filter {
log::debug!("RAG search filtered to contact: {}", contact);
diesel::sql_query(
"SELECT id, contact, body, timestamp, is_sent, embedding, created_at, model_version
FROM message_embeddings WHERE contact = ?1"
)
.bind::<diesel::sql_types::Text, _>(contact)
.load::<MessageEmbeddingWithVectorRow>(conn.deref_mut())
.map_err(|e| anyhow::anyhow!("Query error: {:?}", e))?
} else {
log::debug!("RAG search across ALL contacts (cross-perspective)");
diesel::sql_query(
"SELECT id, contact, body, timestamp, is_sent, embedding, created_at, model_version
FROM message_embeddings"
)
.load::<MessageEmbeddingWithVectorRow>(conn.deref_mut())
.map_err(|e| anyhow::anyhow!("Query error: {:?}", e))?
};
log::debug!("Loaded {} messages for similarity comparison", results.len());
// Compute similarity for each message
let mut scored_messages: Vec<(f32, MessageEmbedding)> = results
.into_iter()
.filter_map(|row| {
// Deserialize the embedding BLOB
match Self::deserialize_vector(&row.embedding) {
Ok(embedding) => {
// Compute cosine similarity
let similarity = Self::cosine_similarity(query_embedding, &embedding);
Some((
similarity,
MessageEmbedding {
id: row.id,
contact: row.contact,
body: row.body,
timestamp: row.timestamp,
is_sent: row.is_sent,
created_at: row.created_at,
model_version: row.model_version,
},
))
}
Err(e) => {
log::warn!("Failed to deserialize embedding for message {}: {:?}", row.id, e);
None
}
}
})
.collect();
// Sort by similarity (highest first)
scored_messages.sort_by(|a, b| b.0.partial_cmp(&a.0).unwrap_or(std::cmp::Ordering::Equal));
// Log similarity score distribution
if !scored_messages.is_empty() {
log::info!(
"Similarity score distribution - Top: {:.3}, Median: {:.3}, Bottom: {:.3}",
scored_messages.first().map(|(s, _)| *s).unwrap_or(0.0),
scored_messages.get(scored_messages.len() / 2).map(|(s, _)| *s).unwrap_or(0.0),
scored_messages.last().map(|(s, _)| *s).unwrap_or(0.0)
);
}
// Apply minimum similarity threshold
// With single-contact embeddings, scores tend to be higher due to writing style similarity
// Using 0.65 to get only truly semantically relevant messages
let min_similarity = 0.65;
let filtered_messages: Vec<(f32, MessageEmbedding)> = scored_messages
.into_iter()
.filter(|(similarity, _)| *similarity >= min_similarity)
.collect();
log::info!(
"After similarity filtering (min_similarity={}): {} messages passed threshold",
min_similarity,
filtered_messages.len()
);
// Filter out short/generic messages (under 30 characters)
// This removes conversational closings like "Thanks for talking" that dominate results
let min_message_length = 30;
// Common closing phrases that should be excluded from RAG results
let stop_phrases = [
"thanks for talking",
"thank you for talking",
"good talking",
"nice talking",
"good night",
"good morning",
"love you",
];
let filtered_messages: Vec<(f32, MessageEmbedding)> = filtered_messages
.into_iter()
.filter(|(_, message)| {
// Filter by length
if message.body.len() < min_message_length {
return false;
}
// Filter out messages that are primarily generic closings
let body_lower = message.body.to_lowercase();
for phrase in &stop_phrases {
// If the message contains this phrase and is short, it's likely just a closing
if body_lower.contains(phrase) && message.body.len() < 100 {
return false;
}
}
true
})
.collect();
log::info!(
"After length filtering (min {} chars): {} messages remain",
min_message_length,
filtered_messages.len()
);
// Apply temporal diversity filter - don't return too many messages from the same day
// This prevents RAG from returning clusters of messages from one conversation
let mut filtered_with_diversity = Vec::new();
let mut dates_seen: std::collections::HashMap<chrono::NaiveDate, usize> = std::collections::HashMap::new();
let max_per_day = 3; // Maximum 3 messages from any single day
for (similarity, message) in filtered_messages.into_iter() {
let date = chrono::DateTime::from_timestamp(message.timestamp, 0)
.map(|dt| dt.date_naive())
.unwrap_or_else(|| chrono::Utc::now().date_naive());
let count = dates_seen.entry(date).or_insert(0);
if *count < max_per_day {
*count += 1;
filtered_with_diversity.push((similarity, message));
}
}
log::info!(
"After temporal diversity filtering (max {} per day): {} messages remain",
max_per_day,
filtered_with_diversity.len()
);
// Take top N results from diversity-filtered messages
let top_results: Vec<MessageEmbedding> = filtered_with_diversity
.into_iter()
.take(limit)
.map(|(similarity, message)| {
let time = chrono::DateTime::from_timestamp(message.timestamp, 0)
.map(|dt| dt.format("%Y-%m-%d").to_string())
.unwrap_or_default();
log::info!(
"RAG Match: similarity={:.3}, date={}, contact={}, body=\"{}\"",
similarity,
time,
message.contact,
&message.body.chars().take(80).collect::<String>()
);
message
})
.collect();
Ok(top_results)
})
.map_err(|_| DbError::new(DbErrorKind::QueryError))
}
fn get_message_count(
&mut self,
context: &opentelemetry::Context,
contact: &str,
) -> Result<i64, DbError> {
trace_db_call(context, "query", "get_message_count", |_span| {
let mut conn = self.connection.lock().expect("Unable to get EmbeddingDao");
let count = diesel::sql_query(
"SELECT COUNT(*) as count FROM message_embeddings WHERE contact = ?1"
)
.bind::<diesel::sql_types::Text, _>(contact)
.get_result::<CountResult>(conn.deref_mut())
.map(|r| r.count)
.map_err(|e| anyhow::anyhow!("Count query error: {:?}", e))?;
Ok(count)
})
.map_err(|_| DbError::new(DbErrorKind::QueryError))
}
fn has_embeddings_for_contact(
&mut self,
context: &opentelemetry::Context,
contact: &str,
) -> Result<bool, DbError> {
self.get_message_count(context, contact)
.map(|count| count > 0)
}
fn message_exists(
&mut self,
context: &opentelemetry::Context,
contact: &str,
body: &str,
timestamp: i64,
) -> Result<bool, DbError> {
trace_db_call(context, "query", "message_exists", |_span| {
let mut conn = self.connection.lock().expect("Unable to get EmbeddingDao");
let count = diesel::sql_query(
"SELECT COUNT(*) as count FROM message_embeddings
WHERE contact = ?1 AND body = ?2 AND timestamp = ?3"
)
.bind::<diesel::sql_types::Text, _>(contact)
.bind::<diesel::sql_types::Text, _>(body)
.bind::<diesel::sql_types::BigInt, _>(timestamp)
.get_result::<CountResult>(conn.deref_mut())
.map(|r| r.count)
.map_err(|e| anyhow::anyhow!("Count query error: {:?}", e))?;
Ok(count > 0)
})
.map_err(|_| DbError::new(DbErrorKind::QueryError))
}
}
// Helper structs for raw SQL queries
#[derive(QueryableByName)]
struct LastInsertRowId {
#[diesel(sql_type = diesel::sql_types::BigInt)]
id: i64,
}
#[derive(QueryableByName)]
struct MessageEmbeddingRow {
#[diesel(sql_type = diesel::sql_types::Integer)]
id: i32,
#[diesel(sql_type = diesel::sql_types::Text)]
contact: String,
#[diesel(sql_type = diesel::sql_types::Text)]
body: String,
#[diesel(sql_type = diesel::sql_types::BigInt)]
timestamp: i64,
#[diesel(sql_type = diesel::sql_types::Bool)]
is_sent: bool,
#[diesel(sql_type = diesel::sql_types::BigInt)]
created_at: i64,
#[diesel(sql_type = diesel::sql_types::Text)]
model_version: String,
}
#[derive(QueryableByName)]
struct MessageEmbeddingWithVectorRow {
#[diesel(sql_type = diesel::sql_types::Integer)]
id: i32,
#[diesel(sql_type = diesel::sql_types::Text)]
contact: String,
#[diesel(sql_type = diesel::sql_types::Text)]
body: String,
#[diesel(sql_type = diesel::sql_types::BigInt)]
timestamp: i64,
#[diesel(sql_type = diesel::sql_types::Bool)]
is_sent: bool,
#[diesel(sql_type = diesel::sql_types::Binary)]
embedding: Vec<u8>,
#[diesel(sql_type = diesel::sql_types::BigInt)]
created_at: i64,
#[diesel(sql_type = diesel::sql_types::Text)]
model_version: String,
}
#[derive(QueryableByName)]
struct CountResult {
#[diesel(sql_type = diesel::sql_types::BigInt)]
count: i64,
}

View File

@@ -9,11 +9,15 @@ use crate::database::models::{
};
use crate::otel::trace_db_call;
pub mod embeddings_dao;
pub mod daily_summary_dao;
pub mod insights_dao;
pub mod models;
pub mod schema;
pub use embeddings_dao::{EmbeddingDao, InsertMessageEmbedding, SqliteEmbeddingDao};
pub use insights_dao::{InsightDao, SqliteInsightDao};
pub use daily_summary_dao::{DailySummaryDao, SqliteDailySummaryDao, DailySummary, InsertDailySummary};
pub trait UserDao {
fn create_user(&mut self, user: &str, password: &str) -> Option<User>;

View File

@@ -718,7 +718,7 @@ fn main() -> std::io::Result<()> {
}
create_thumbnails();
generate_video_gifs().await;
// generate_video_gifs().await;
let app_data = Data::new(AppState::default());
@@ -742,6 +742,50 @@ fn main() -> std::io::Result<()> {
directory: app_state.base_path.clone(),
});
// Spawn background job to generate daily conversation summaries
{
use crate::ai::generate_daily_summaries;
use crate::database::{DailySummaryDao, SqliteDailySummaryDao};
use chrono::NaiveDate;
// Configure date range for summary generation
// Default: August 2024 ±30 days (July 1 - September 30, 2024)
// To expand: change start_date and end_date
let start_date = Some(NaiveDate::from_ymd_opt(2015, 10, 1).unwrap());
let end_date = Some(NaiveDate::from_ymd_opt(2020, 1, 1).unwrap());
let contacts_to_summarize = vec!["Domenique", "Zach", "Paul"]; // Add more contacts as needed
let ollama = app_state.ollama.clone();
let sms_client = app_state.sms_client.clone();
for contact in contacts_to_summarize {
let ollama_clone = ollama.clone();
let sms_client_clone = sms_client.clone();
let summary_dao: Arc<Mutex<Box<dyn DailySummaryDao>>> =
Arc::new(Mutex::new(Box::new(SqliteDailySummaryDao::new())));
let start = start_date;
let end = end_date;
tokio::spawn(async move {
log::info!("Starting daily summary generation for {}", contact);
if let Err(e) = generate_daily_summaries(
contact,
start,
end,
&ollama_clone,
&sms_client_clone,
summary_dao
).await {
log::error!("Daily summary generation failed for {}: {:?}", contact, e);
} else {
log::info!("Daily summary generation completed for {}", contact);
}
});
}
}
HttpServer::new(move || {
let user_dao = SqliteUserDao::new();
let favorites_dao = SqliteFavoriteDao::new();

View File

@@ -1,5 +1,5 @@
use crate::ai::{InsightGenerator, OllamaClient, SmsApiClient};
use crate::database::{ExifDao, InsightDao, SqliteExifDao, SqliteInsightDao};
use crate::database::{DailySummaryDao, ExifDao, InsightDao, SqliteDailySummaryDao, SqliteExifDao, SqliteInsightDao};
use crate::video::actors::{PlaylistGenerator, StreamActor, VideoPlaylistManager};
use actix::{Actor, Addr};
use std::env;
@@ -91,6 +91,8 @@ impl Default for AppState {
Arc::new(Mutex::new(Box::new(SqliteInsightDao::new())));
let exif_dao: Arc<Mutex<Box<dyn ExifDao>>> =
Arc::new(Mutex::new(Box::new(SqliteExifDao::new())));
let daily_summary_dao: Arc<Mutex<Box<dyn DailySummaryDao>>> =
Arc::new(Mutex::new(Box::new(SqliteDailySummaryDao::new())));
// Load base path
let base_path = env::var("BASE_PATH").expect("BASE_PATH was not set in the env");
@@ -101,6 +103,7 @@ impl Default for AppState {
sms_client.clone(),
insight_dao.clone(),
exif_dao.clone(),
daily_summary_dao.clone(),
base_path.clone(),
);
@@ -147,6 +150,8 @@ impl AppState {
Arc::new(Mutex::new(Box::new(SqliteInsightDao::new())));
let exif_dao: Arc<Mutex<Box<dyn ExifDao>>> =
Arc::new(Mutex::new(Box::new(SqliteExifDao::new())));
let daily_summary_dao: Arc<Mutex<Box<dyn DailySummaryDao>>> =
Arc::new(Mutex::new(Box::new(SqliteDailySummaryDao::new())));
// Initialize test InsightGenerator
let base_path_str = base_path.to_string_lossy().to_string();
@@ -155,6 +160,7 @@ impl AppState {
sms_client.clone(),
insight_dao.clone(),
exif_dao.clone(),
daily_summary_dao.clone(),
base_path_str.clone(),
);