Enhanced Insights with daily summary embeddings

Bump to 0.5.0. Added daily summary generation job
This commit is contained in:
Cameron
2026-01-05 09:13:16 -05:00
parent 43b7c2b8ec
commit 11e725c443
18 changed files with 2348 additions and 61 deletions

View File

@@ -0,0 +1,338 @@
use diesel::prelude::*;
use diesel::sqlite::SqliteConnection;
use serde::Serialize;
use std::ops::DerefMut;
use std::sync::{Arc, Mutex};
use crate::database::{connect, DbError, DbErrorKind};
use crate::otel::trace_db_call;
/// Represents a daily conversation summary
#[derive(Serialize, Clone, Debug)]
pub struct DailySummary {
pub id: i32,
pub date: String,
pub contact: String,
pub summary: String,
pub message_count: i32,
pub created_at: i64,
pub model_version: String,
}
/// Data for inserting a new daily summary
#[derive(Clone, Debug)]
pub struct InsertDailySummary {
pub date: String,
pub contact: String,
pub summary: String,
pub message_count: i32,
pub embedding: Vec<f32>,
pub created_at: i64,
pub model_version: String,
}
pub trait DailySummaryDao: Sync + Send {
/// Store a daily summary with its embedding
fn store_summary(
&mut self,
context: &opentelemetry::Context,
summary: InsertDailySummary,
) -> Result<DailySummary, DbError>;
/// Find semantically similar daily summaries using vector similarity
fn find_similar_summaries(
&mut self,
context: &opentelemetry::Context,
query_embedding: &[f32],
limit: usize,
) -> Result<Vec<DailySummary>, DbError>;
/// Check if a summary exists for a given date and contact
fn summary_exists(
&mut self,
context: &opentelemetry::Context,
date: &str,
contact: &str,
) -> Result<bool, DbError>;
/// Get count of summaries for a contact
fn get_summary_count(
&mut self,
context: &opentelemetry::Context,
contact: &str,
) -> Result<i64, DbError>;
}
pub struct SqliteDailySummaryDao {
connection: Arc<Mutex<SqliteConnection>>,
}
impl Default for SqliteDailySummaryDao {
fn default() -> Self {
Self::new()
}
}
impl SqliteDailySummaryDao {
pub fn new() -> Self {
SqliteDailySummaryDao {
connection: Arc::new(Mutex::new(connect())),
}
}
fn serialize_vector(vec: &[f32]) -> Vec<u8> {
use zerocopy::IntoBytes;
vec.as_bytes().to_vec()
}
fn deserialize_vector(bytes: &[u8]) -> Result<Vec<f32>, DbError> {
if bytes.len() % 4 != 0 {
return Err(DbError::new(DbErrorKind::QueryError));
}
let count = bytes.len() / 4;
let mut vec = Vec::with_capacity(count);
for chunk in bytes.chunks_exact(4) {
let float = f32::from_le_bytes([chunk[0], chunk[1], chunk[2], chunk[3]]);
vec.push(float);
}
Ok(vec)
}
fn cosine_similarity(a: &[f32], b: &[f32]) -> f32 {
if a.len() != b.len() {
return 0.0;
}
let dot_product: f32 = a.iter().zip(b.iter()).map(|(x, y)| x * y).sum();
let magnitude_a: f32 = a.iter().map(|x| x * x).sum::<f32>().sqrt();
let magnitude_b: f32 = b.iter().map(|x| x * x).sum::<f32>().sqrt();
if magnitude_a == 0.0 || magnitude_b == 0.0 {
return 0.0;
}
dot_product / (magnitude_a * magnitude_b)
}
}
impl DailySummaryDao for SqliteDailySummaryDao {
fn store_summary(
&mut self,
context: &opentelemetry::Context,
summary: InsertDailySummary,
) -> Result<DailySummary, DbError> {
trace_db_call(context, "insert", "store_summary", |_span| {
let mut conn = self.connection.lock().expect("Unable to get DailySummaryDao");
// Validate embedding dimensions
if summary.embedding.len() != 768 {
return Err(anyhow::anyhow!(
"Invalid embedding dimensions: {} (expected 768)",
summary.embedding.len()
));
}
let embedding_bytes = Self::serialize_vector(&summary.embedding);
// INSERT OR REPLACE to handle updates if summary needs regeneration
diesel::sql_query(
"INSERT OR REPLACE INTO daily_conversation_summaries
(date, contact, summary, message_count, embedding, created_at, model_version)
VALUES (?1, ?2, ?3, ?4, ?5, ?6, ?7)"
)
.bind::<diesel::sql_types::Text, _>(&summary.date)
.bind::<diesel::sql_types::Text, _>(&summary.contact)
.bind::<diesel::sql_types::Text, _>(&summary.summary)
.bind::<diesel::sql_types::Integer, _>(summary.message_count)
.bind::<diesel::sql_types::Binary, _>(&embedding_bytes)
.bind::<diesel::sql_types::BigInt, _>(summary.created_at)
.bind::<diesel::sql_types::Text, _>(&summary.model_version)
.execute(conn.deref_mut())
.map_err(|e| anyhow::anyhow!("Insert error: {:?}", e))?;
let row_id: i32 = diesel::sql_query("SELECT last_insert_rowid() as id")
.get_result::<LastInsertRowId>(conn.deref_mut())
.map(|r| r.id as i32)
.map_err(|e| anyhow::anyhow!("Failed to get last insert ID: {:?}", e))?;
Ok(DailySummary {
id: row_id,
date: summary.date,
contact: summary.contact,
summary: summary.summary,
message_count: summary.message_count,
created_at: summary.created_at,
model_version: summary.model_version,
})
})
.map_err(|_| DbError::new(DbErrorKind::InsertError))
}
fn find_similar_summaries(
&mut self,
context: &opentelemetry::Context,
query_embedding: &[f32],
limit: usize,
) -> Result<Vec<DailySummary>, DbError> {
trace_db_call(context, "query", "find_similar_summaries", |_span| {
let mut conn = self.connection.lock().expect("Unable to get DailySummaryDao");
if query_embedding.len() != 768 {
return Err(anyhow::anyhow!(
"Invalid query embedding dimensions: {} (expected 768)",
query_embedding.len()
));
}
// Load all summaries with embeddings
let results = diesel::sql_query(
"SELECT id, date, contact, summary, message_count, embedding, created_at, model_version
FROM daily_conversation_summaries"
)
.load::<DailySummaryWithVectorRow>(conn.deref_mut())
.map_err(|e| anyhow::anyhow!("Query error: {:?}", e))?;
log::info!("Loaded {} daily summaries for similarity comparison", results.len());
// Compute similarity for each summary
let mut scored_summaries: Vec<(f32, DailySummary)> = results
.into_iter()
.filter_map(|row| {
match Self::deserialize_vector(&row.embedding) {
Ok(embedding) => {
let similarity = Self::cosine_similarity(query_embedding, &embedding);
Some((
similarity,
DailySummary {
id: row.id,
date: row.date,
contact: row.contact,
summary: row.summary,
message_count: row.message_count,
created_at: row.created_at,
model_version: row.model_version,
},
))
}
Err(e) => {
log::warn!("Failed to deserialize embedding for summary {}: {:?}", row.id, e);
None
}
}
})
.collect();
// Sort by similarity (highest first)
scored_summaries.sort_by(|a, b| b.0.partial_cmp(&a.0).unwrap_or(std::cmp::Ordering::Equal));
// Log similarity distribution
if !scored_summaries.is_empty() {
log::info!(
"Daily summary similarity - Top: {:.3}, Median: {:.3}, Count: {}",
scored_summaries.first().map(|(s, _)| *s).unwrap_or(0.0),
scored_summaries.get(scored_summaries.len() / 2).map(|(s, _)| *s).unwrap_or(0.0),
scored_summaries.len()
);
}
// Take top N and log matches
let top_results: Vec<DailySummary> = scored_summaries
.into_iter()
.take(limit)
.map(|(similarity, summary)| {
log::info!(
"Summary match: similarity={:.3}, date={}, contact={}, summary=\"{}\"",
similarity,
summary.date,
summary.contact,
summary.summary.chars().take(100).collect::<String>()
);
summary
})
.collect();
Ok(top_results)
})
.map_err(|_| DbError::new(DbErrorKind::QueryError))
}
fn summary_exists(
&mut self,
context: &opentelemetry::Context,
date: &str,
contact: &str,
) -> Result<bool, DbError> {
trace_db_call(context, "query", "summary_exists", |_span| {
let mut conn = self.connection.lock().expect("Unable to get DailySummaryDao");
let count = diesel::sql_query(
"SELECT COUNT(*) as count FROM daily_conversation_summaries
WHERE date = ?1 AND contact = ?2"
)
.bind::<diesel::sql_types::Text, _>(date)
.bind::<diesel::sql_types::Text, _>(contact)
.get_result::<CountResult>(conn.deref_mut())
.map(|r| r.count)
.map_err(|e| anyhow::anyhow!("Count query error: {:?}", e))?;
Ok(count > 0)
})
.map_err(|_| DbError::new(DbErrorKind::QueryError))
}
fn get_summary_count(
&mut self,
context: &opentelemetry::Context,
contact: &str,
) -> Result<i64, DbError> {
trace_db_call(context, "query", "get_summary_count", |_span| {
let mut conn = self.connection.lock().expect("Unable to get DailySummaryDao");
diesel::sql_query(
"SELECT COUNT(*) as count FROM daily_conversation_summaries WHERE contact = ?1"
)
.bind::<diesel::sql_types::Text, _>(contact)
.get_result::<CountResult>(conn.deref_mut())
.map(|r| r.count)
.map_err(|e| anyhow::anyhow!("Count query error: {:?}", e).into())
})
.map_err(|_| DbError::new(DbErrorKind::QueryError))
}
}
// Helper structs for raw SQL queries
#[derive(QueryableByName)]
struct LastInsertRowId {
#[diesel(sql_type = diesel::sql_types::BigInt)]
id: i64,
}
#[derive(QueryableByName)]
struct DailySummaryWithVectorRow {
#[diesel(sql_type = diesel::sql_types::Integer)]
id: i32,
#[diesel(sql_type = diesel::sql_types::Text)]
date: String,
#[diesel(sql_type = diesel::sql_types::Text)]
contact: String,
#[diesel(sql_type = diesel::sql_types::Text)]
summary: String,
#[diesel(sql_type = diesel::sql_types::Integer)]
message_count: i32,
#[diesel(sql_type = diesel::sql_types::Binary)]
embedding: Vec<u8>,
#[diesel(sql_type = diesel::sql_types::BigInt)]
created_at: i64,
#[diesel(sql_type = diesel::sql_types::Text)]
model_version: String,
}
#[derive(QueryableByName)]
struct CountResult {
#[diesel(sql_type = diesel::sql_types::BigInt)]
count: i64,
}